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Introduction:


According to CERT (Computer Emergency Response Team), from 1989 to 1995, denial of service attacks have increased by 50 percent each year, and they are currently considered to be one of the hardest Internet security problems to address.  One of the reasons for this is that they are simple to implement, difficult to prevent, and very difficult to trace [12].  In addition, tools are readily available to allow crackers, and “script kiddies” to easily carry out attacks.  Some common examples of denial of service attack software programs are smurf, fraggle, teardrop, tribe flood network (TFN), trinoo, stacheldraht, m-stream, omega, trinity, myServer, plague, shaft, entitee, raped, etc. [4,13].  


The threat of distributed denial of service attacks was made evident in February of 2000, when well known commercial websites such as Amazon, buy.com, CNN, eBay, E*TRADE, Yahoo, ZDNet, and many others were almost completely inaccessible for a period of more than two days [13].  Since 2000, smaller scale denial of service attacks have occurred, not as notable as the aforementioned attacks, however, that does not necessarily mean that another attack of equal or greater proportion could not be initiated.  This paper will examine the denial of service problem, defining and giving examples of what it is, as well as demonstrate current and proposed solutions for its detection, prevention, and methods for tracing the instigators of such attacks.

The Problem:


Denial of service can be defined as a malicious attack that consumes “resources of remote hosts or networks denying or degrading service to legitimate users,” [12].
  Although the term denial of service is the generic name given to the attack, there are actually several different types of these attacks, each accomplishing approximately the same types of results.  These different categories of attacks are bandwidth consumption, programming flaw attacks, resource starvation, routing and DNS attacks, SYN floods, and other generic attacks.


In a bandwidth consumption attack, a host having more bandwidth targets a smaller host, or network with a packet flood.  These attacks can be quite powerful, as even hosts on dedicated T-1 lines have been hit.  A variation of this type of attack is when a computer having a limited amount of bandwidth, uses an amplifying network to effectively increase the amount of traffic sent to a host or network.  Using this method, a user on a 56 Kbps modem can successfully deny service to clients using a T-1 line, or greater.  Attacks of this nature can utilize many different types of Internet packets, with ICMP, IGMP, and UDP being the most common choices.


Malicious users seek to undermine the ability of hardware, software, to handle exceptional conditions in a programming flaw attack.  In such an attack, a user sends unintended data to a vulnerable element.  An example of a hardware attack can occur if an attacker discovers that a host is using an Intel Pentium processor in its server.  Due to a hardware flaw in the Pentium processor, the F00FC7C8 instruction can cause the processor to lock.  A software example of a programming flaw attack occurs under the Windows 95 operating system.  In the implementation of the IP stack under Windows 95, out of band (OOB) data can be sent to port 139 causing the machine to crash or lock.  Microsoft has released a patch for this problem, but unpatched machines are susceptible to this type of attack.


In resource starvation, a cracker attempts to consume all of a server’s available CPU, memory, or hard drive space rather than it’s network resources.  An example of this type of attack can occur under the Unix or Linux operating system if certain hard drive partitions are filled.  A network administrator, for example, might find that a machine with a full root partition will refuse to boot after a shutdown has occurred.


Routing and domain name service (DNS) attacks occur when an attacker changes DNS, and/or routing tables such that traffic to the affected sites is rerouted to the attacker’s network, a rival network, or in some cases, a “black hole,” or non-existent network.  DNS attacks can occur when security on a DNS server is low, whereas routing attacks can occur due to the weak authentication schemes implemented in current routing protocols such as routing information protocol (RIP) and border gateway protocol (BGP).


Attackers can also deny service to legitimate clients by initiating a SYN flood.  The basis of this attack stems from the nature of the TCP client-server handshaking policy.  Under existing TCP specifications, in order for a client to connect to a server, it first sends the server a SYN (synchronize) packet, asking for connection.  The server responds to the client with a SYN/ACK (synchronize acknowledgement).  Finally, the client responds with an ACK, and a connection is established.  In the case that a server responds with a SYN/ACK to a client that did not request a connection, an RST (reset) packet is sent.  A server has a finite connection queue that will allow a limited number of concurrent connections.  An attacker can quickly fill this queue by falsifying or “spoofing” the source IP address of a SYN packet with an invalid address, or address of a non-existent network.  The reason for this is that when a server sends out a SYN/ACK, and receives no ACK or RST, it continues to send the packet, assuming that the packet was lost in transit.  When the entire connection queue is filled with these types of requests, legitimate users are denied service, because no connection can be made.


Sometimes, denial of service attacks occur, but were not intended.  When this occurs, it is referred to as a generic attack.  Examples of this type of attack are the Melissa virus, which clogged Internet traffic for several weeks.  Several other viruses, and worms have done this as well.  E-mail bombs can also overwhelm a mail server in some cases, denying service to clients expecting to receive e-mail [13].


A newer variation on these types of attacks is called a distributed denial of service attack.  An attacker gains access to a series of machines and installs daemons that have the ability to attack with one or more types of the abovementioned attacks.  A handler, or controlling machine is used to issue commands to these zombie machines [4].


Having defined what denial of service attacks are, I will now show some of the problems with detecting and preventing denial of service attacks.


The first problem is that attackers seek to conceal their identities and traffic origins through long login chains.  An attacker uses telnet, ssh, or rlogin commands to jump from host to host creating a long chain of “stepping stone” systems that is hard, if not impossible to trace back to the source.  He/she then launches the attack from the end of the chain.  A method for tracing these chains back to the source is described in the proposed solution section, but is almost useless, due to the fact that the majority of these chains are from legitimate users, rather than malicious ones [20].


A second problem is that the Internet is stateless, and destination driven.  Because of this, there is not sufficient logging of packets to trace denial of service attack sources, or even to check whether a given source IP address is valid.  Source IP addresses, in addition can be easily spoofed.  There are also legitimate uses of IP spoofing such as in the case of network address translation (NAT) and Mobile IP, so removing the ability to spoof source IP addresses is not a solution to the problem.


I mentioned earlier about the weak authentication in routing protocols like RIP and BGP.  Because of these weak authentication schemes, routers can be compromised, though it very rarely happens.  Also relating to routers is the fact that their job is to route packets quickly and efficiently to their destination.  Routers can perform a minimal amount of arithmetic functions, such as incrementing and decrementing IP header fields as well as calculating packet checksums.  Since IP version 4 currently does not give support for tracing packets back to their sources, some of the proposed schemes for tracking denial of service attacks suggest that routers be used to stamp IP headers with hashes of their IP addresses, on a probabilistic basis.  Complicating a router’s job, however, will result in the slowing of packet transfer, and should only be done to the extent that adverse effects of packet traffic is minimal.  The next section of this paper discusses the current solutions to the increasing denial of service problem.

Current Solutions:


There are two basic solutions to the growing DoS concern.  The first is a preventative measure, whereas the second is a reactive measure.  The old adage “an ounce of prevention is better than a pound of cure” goes true for the realm of networking, and as an act of prevention, network administrators, and system administrators can try to make their networks more impervious to attack by installing firewalls.  Operating system manufacturers can also seek to make their systems more robust by increasing the amount of allowable connections, to help deter SYN floods.  But measures such as these only go so far, as there is only a limited amount of improvement that one can make to an operating system, or firewall.  In the end, however, even these types of measures can be thwarted, so this really does not constitute a solution.


The current reactive solution occurs when a network administrator discovers an attack in progress.  The Internet is an agglomeration of independent autonomous systems [9].  Each of these autonomous systems also depends on an ISP for its connection to the Internet.  In order to trace the attack, the system administrator first tries to determine the IP address of the closest autonomous network through which the offending packets traveled.  He/she then picks up the phone and calls the ISP in charge of that network, and tries to get it to trace back the packet to the network before that.  The ISP of that network is called and the cycle repeats itself until the offending network is discovered.  This also is not a real solution for a number of reasons.  First and foremost, ISPs are normally overworked and undermanned and many are not willing to put in the unrewarded time and effort needed to conduct such traces (especially since the victim is often not a customer of all ISPs through which the traffic traveled).  Secondly, a trace of this fashion can only be conducted while the actual attack is still in progress.  Once the attacking stops, the trail dies with it, again relating to the stateless nature of IP [2].


It is apparent that the current solutions given above are not highly effective against the prevention of DoS attacks, nor do they allow easy tracing of the source of such attacks.  In the proposed solutions section, I elaborate on suggested solutions to the denial of service problem.

Proposed Solutions:

An old adage states, “in time of peace, prepare for war,” and this is one adage that network administrators would be wise to heed.  No network is impervious to denial of service attacks, yet there are several things that ISPs can do to prevent against them, and to be ready for them when they do occur.  The following four proposed solutions traffic engineering, upstream router mapping, ingress filtering, and traffic observation, are preventative steps that can help deter as well as prepare for denial of service attacks.

One of the most effective ways to help deter denial of service attacks, is to be sure that all of the links in a network are functioning normally, and not overloaded in comparison to other routes.  By ensuring that all links have approximately the same rate of traffic flowing through them, this ensures that an attacker will not be able to easily overwhelm one particular route to a host, thus causing network congestion.  A set of researchers from AT&T Labs have developed a set of software tools collectively known as NetScope that allows ISPs to view the amount of traffic flowing through given links and also allow them to make changes in the routing table weights to more proportionately distribute network traffic over underutilized links.  

NetScope is targeted to networks that use the OSPF routing protocol, because under this protocol, links are given weights based on how much traffic they can hold, and the total distance of the link.  The NetScope system allows a network administrator to manually make changes to these weights, and displays a color-coded graph of the links, which is updated in real time to note the changes [6].  By using a system such as NetScope, system administrators can prepare for denial of service attacks before they occur by ascertaining that a network is flexible and will not be congested due to an enormous amount of traffic flowing over relatively few links.
Network administrators would save themselves a lot of time and effort in the event of denial of service attacks, if they took the time to make a map of their closest upstream routers.  Such a map would cut tracing time down to a fraction of what it normally would be, without such a map.  The problem is that developing a map like this is sometimes time consuming, so creating a map during an attack is almost out of the question.  Traceroute performs this task, albeit rather slowly, so administrators need more flexible tools that they can use to create custom maps of the network connections closest to them.  Mercator is a software system that was created to help system administrators create complete upstream maps with no starting information, by using only hop-limited probes coupled with help from any source routers it finds.  The 14,000-line C++ program can discover over 150,000 interfaces and 200,000 links in only 3 weeks.  Granted most system administrators will not need a map of this size, but it is interesting to note that a complete map of the Internet can be generated if needed [8].  Maps like these do come in handy, even when using the current solution of picking up the phone and dialing the nearest ISP, as network administrators would at least have an idea of what router interface belongs to what network.

Theilmann and Rothermel give an alternate approach to creating network maps.  Under their system, maps would only be created as needed (in the case relevant to this paper, during a DoS attack).  A distributed set of mServers (measurement servers) can use any distance metric (number of hops, round trip time, packet loss rate, bandwidth, etc.) to determine the distance between two hosts, by estimating the time it takes to reach the nearest mServer to a given host [18].  Personally, I do not believe that this method is nearly as effective as the previous method of generating upstream router maps for a number of reasons.  Namely, since the IP address of the attacking packets are normally spoofed, the distance to the host measured may be completely off track.  Distances to non-existent hosts cannot be measured, and distances to hosts that are on completely different networks from those on which the attack originates are fruitless.  Also, since a denial of service attack may be congesting the network, the ability to perform such a trace is questionable, since the distance would need to be calculated while the attack was in progress.


RFC 2267 provides a potential solution to minimizing denial of service attacks at the source.  The main appeal of the attacks, as mentioned previously, is that the address from which the attacks occur can be spoofed, or falsified to another, even non-existent address.  In this paper, the authors, Ferguson and Senie, suggest that ISPs implement “ingress traffic filtering to prohibit DoS attacks which use forged IP addresses to be propagated from 'behind' an Internet Service Provider's (ISP) aggregation point.”  The basic idea behind the filtering is to stop traffic with invalid source addresses.  Under this scheme, IP addresses which contain invalid digits like 0, as well as addresses for local or non-existent networks (192.168.*.* and 10.*.*.*) would be dropped at an ISP’s ingress routers.  The authors also suggest logging of packets so that an audit trail may uncover enough evidence to determine the source of an attack.  If an ISP only has a limited range of IP addresses, further restriction could apply.  For example, on the Auburn University network, all source addresses not beginning with 131.204 could be dropped and logged.  The authors suggest that this would deter crackers from initiating DoS attacks, as well as aid in the possible trace back of malicious packets to their source in the event of such an attack.  Ferguson and Senie are quick to note, however, that the last eight bits of the address can still be spoofed and pass through the filters, but at least the attack victim would have an idea of the network from which the attack originated.


The authors also state that in addition to ingress filtering, system administrators should take special measures to further protect their network from attack.  They specifically mention dropping all UDP packets from outside their domain that are destined for system diagnostic ports.  They also comment on another insidious attack, which can be stopped at border routers.  In certain routers, Broadcast IP addresses, (e.g. 10.255.255.255) are translated into MAC protocol broadcast addresses (e.g. FF:FF:FF:FF:FF:FF).  This causes every Ethernet interface receiving the packet to receive an interrupt to process the request, which has the potential for a major denial of service situation.  The authors suggest that network administrators make certain that border routers do not allow directed broadcast packets to be forwarded by default.


There are some potential problems with ingress filtering, as some ISPs offer services under which such filtering will break.  Mobile IP clients are specifically affected by ingress filtering because traffic to mobile nodes is tunneled, whereas traffic from the nodes is not such that the source IP address of the node will not meet the numeric specifications of the ISP’s network.  The Mobile IP Working Group is aware of this problem, and is currently working on a scheme known as “reverse tunneling” to solve the problem [7].

Duffield and Grossglauser suggest that traffic through networks be monitored, asserting that by observing the paths that traffic takes through a domain, traffic engineering can be more easily accomplished.  They suggest that packets be randomly sampled and encoded via a hash function derived from the non-changing fields of the header as well as a few bits from the payload.  They note that identical headers appear too frequently in IP packets to rely on them alone, and also interject that increasing a bit sample size beyond 40 bits does not reduce hashing collisions, due to the fact that the collisions occur due to identical packets.  The authors of this paper assert that by checking the packet samples, they can determine the exact path that a packet traveled through the network [5].  As I mentioned earlier, traffic engineering is one of the ways that system administrators can effectively guard against DoS attacks, however, the idea of imposing random sampling packet hash function entails a lot of overhead with little return.  I would highly recommend the NetScope solution over this one, as it does not require as much overhead.

Preventative solutions can help network administrators prepare for a DoS attack before one occurs, but when a network is actually in the throws of an assault, reactive solutions suddenly become the proverbial weapon of choice.  Below, I discuss four proposed reactive solutions to a denial of service attack counter flooding trace, probabilistic packet marking, ICMP trace back messages, and stepping-stone detection.

Burch and Cheswick propose a method to trace a DoS attack back to its source that is somewhat unconventional.  They assert that by targeting servers that have UDP chargen (character generation service) active, that small-scale counter DoS attacks can be used to trace attacks back to their source.  Using this method, they assume that the attacker is oblivious to the fact that he/she is being traced.  Basically, for the cost of a few ACK packets, a network administrator can broadcast character data targeted against upstream routers and then watch which router is perturbed by the packet flow, as a router perturbed by the chargen flow is more than likely one that is involved in the attack.  The flow can then be aimed more upstream until the origin of the attack is found.  The authors, while stating that this method works, do have their reservations, and raise a few ethical questions about its use.  They ask if such a method should be used if the damage caused by traffic flow disruption of the actual trace outweighs the damage done by the attack itself.  They also ponder whether a service like chargen on foreign should be used, since network administrators have not disabled it.  After all, just because one can do something does not necessarily mean that one should [2].  This is an interesting method of tracing DoS attacks back to their source, but the ethical questions raised makes it evident that more viable solutions should be sought.
Savage et al. propose the first of several different probabilistic packet-marking schemes.  They call their implementation the fragmented marking scheme because it encodes fragments of a router’s IP address.  In order to implement this scheme, they overload the 16-bit IP identification field, using five bits to keep track of the distance a packet has traveled (up to 32 hops).  A 64-bit string is computed which contains the 32 bits of a router’s IP address on odd bits and a 32-bit hash of the address on even digits.  This string is broken into eight fragments, one of which is stored in eight bits of the identification field.  The remaining three bits are used to indicate the offset of the fragment used.  Subsequent routers will XOR the fragment from the same location with the previous stamp on a probabilistic basis.  Even if a router does not stamp a fragment of its address, it increments the distance field, to give the victim an accurate hop count of the distance the packet has traveled (starting from zero).  Experimentation with this scheme reveals that attacks up to 30 hops away can be reconstructed with only 4500 packets (most attackers send in the neighborhood of 20,000 packets per second of attack, so this is a very reasonable number) [12].  This solution, however, does not scale well to distributed denial of service attacks.
Song and Perrig have advanced the above system proposing two different schemes: the advanced marking scheme, and the authenticated marking scheme.  Under this implementation, the 16-bit IP identification field is overloaded, five bits of which are used to track the distance a packet has traveled, while the other 11 bits store a computed hash of the router’s IP address.  This field is marked by routers on a probabilistic basis, and subsequent routers XOR their hash with the previous if this field has already been written.  Whether the router writes the hash of its IP address or not, the distance field is mandatorily incremented.  The five bits will allow a record of up to 32 hops; however, the authors note that paths on the internet seldom reach that high.  If two different hash functions are used, the authors state that the system can trace up to 60 simultaneous attacks.  They further implemented a second scheme where two sets of hash functions are used to compute an eight-bit hash of the router’s IP address.  Five bits are still used to compute the distance traveled, and the remaining three bits are used to specify which hash function was used to encode the address.  This scheme had better results than the previous as up to 2000 simultaneous attackers can be traced.  It is also very efficient, as a 500 MHz Pentium II linux box created an attack graph of the attackers in less than two minutes.  The authors realize the ability of routers to be compromised and suggest an authenticating scheme as well.  They assert that by using one-way MD5 hashing techniques, a victim need only download the disclosed keys of the routers.  A compromised router could not modify data written by another router so at least part of the attack path would be valid [16].

Dean, Franklin, and Stubblefield provide another alternative approach to probabilistic packet marking.  Rather than calculating a hash of the router IP addresses, they propose to store an algebraic sum of the IP addresses in 15 bits of the IP identification field.  The existing value in this field is multiplied by a random value passed in the packet, and the IP address of the router is added to this value.  Then the modulus of the resulting value and the largest prime less than (2^32) –1 is written to the field as the packet is passed downstream.  The full path can be encoded this way, if the initial value of the IP identification field could be initialized to zero at the first router hop.  However, since there is no way for a router to know that it is the first hop, it randomly generates a number to decide whether or not it should be the first hop and encodes its IP address accordingly.  Their statistics show that encoding packets in this manner does not take a substantial amount of time, as a 333MHz Pentium II processor was able to route 95 Mbits/sec worth of traffic over a 100 Mbit/sec ethernet connection in both the marked and unmarked cases.  They go on to show that in as little as 80,000 packets, hosts as far as 40 hops away can be detected [3].  Personally, this scheme seems quite a bit more complex in recovering IP addresses than the previous schemes, and I would be more inclined to choose them over the algebraic method.

Park and Lee question the effectiveness of probabilistic packet marking by stating that attackers can forge the marked addresses, thus when packets arrive, unmarked by routers, the tracing is directed toward a proverbial wild goose chase.  They make some bad assumptions however.  They state that under the probabilistic schemes, routers stamp their addresses, whereas subsequent routers write over the addresses that have already been stamped.  This has not been the case in the schemes that I have studied and mentioned above.  All of the abovementioned schemes use the XOR of the two addresses, or an algebraic sum of the two addresses, which erases no previous information.  The authors also state that these schemes can hold up under a single attack, but fail in the distributed denial of service case.  Test results from the advanced scheme proposed by Song and Perrig however, show otherwise [10].  I am critical of the work done by Park and Lee for these errors. 
Bellovin proposes a scheme whereby routers would generate extra ICMP traceback messages.  These messages would be sent on a probabilistic basis (1/20,000 is suggested, but not higher than 1/1000 as the traffic might further aid in a denial of service attack in progress) and would contain useful information such as the IP address of the previous hop in the chain, the IP address of the next hop in the chain, and a time stamp indicating when the packet was generated.  In addition, it is suggested that the TTL field be mandatorily set to 255.  Subsequent hops in the packets path will automatically decrease the TTL field.  This ensures that an accurate count of the number of hops between a router and host can be found by merely subtracting the ending TTL from the initial.  Bellovin also notes that routers can be compromised, and also that such packets might be forged, and further proposes that these packets be digitally signed in some manner.  Of course, digital signatures are too computationally expensive for routers, so an alternative approach of stamping clear text validation strings that would be unique to a given router is suggested.  If the interface name and a timestamp were included, it would also ensure packet freshness [1].  There are problems with this scheme as well, however.  Since ICMP traffic is often involved in DoS attacks, many networks have firewall filtering rules that discard such packets and such networks would not be able to benefit from this measure unless these rules were removed.

Another factor is that these ICMP packets would be generated for all traffic, not just in the case of DoS attacks.  Wu takes the concept of traceback messages and enhances it proposing “intention-driven” iTrace.  Under this scheme, an extra bit, an iiB (iTrace intention bit) is added to the router tables and an ieB (iTrace execution Bit) is added to the packet forwarding tables.  The iiB is set for a particular route if trace back information has been requested from a client (as in the case of a network under a denial of service attack).  When this bit is set, then the ieB is activated on a probabilistic basis, which indicates that the next packet should be traced.  After the ICMP tracing message has been sent, the ieB bit is cleared, but the iiB remains active continuing to randomly set ieBs [19].  BGP is the recommended protocol to be used with this scheme; however, this is somewhat dubious as BGP is highly susceptible to compromise, as noted earlier.  The addition to the iiB and ieB bits to the routing and packet forwarding tables also seem too laborious to be a good solution.  It would appear as though there is not much more apparent gain from this scheme over the Bellovin solution.  


All of the reactive solutions, thus far have dealt with tracing malicious packets back to their source, but as I mentioned earlier, attackers often conceal their identities via long login chains, which they access with stolen username and password information.  They log into one system and then telnet, ssh, or rlogin into a subsequent system several times over, and then launch the attack from the end of this long chain.  Zhang and Paxson have developed a set of algorithms that can be used to trace such login chains back to their source.  By analyzing the timing, size, and the directions of traffic between two or more hosts, correlations can be made which can potential pinpoint the use of a host as a stepping-stone in a connection chain.  By analyzing when connections idle or enter an OFF period and then begin an ON period, at approximately the same time, then these timing details might indicate the presence of a stepping stone pair.  In terms of size, the authors point out that telnet and ssh traffic for connection chains such as those used for activating DoS attacks is often composed of smaller than average packet sizes, due to the small amount of keystroke information being sent between hosts.  Connection flows provide yet another indication of possible stepping stone behavior, as a host in a telnet session generally does not send and receive data at the same time.  Thus flow details can reveal possible stepping-stones.

In the case of telnet sessions, all text passed between systems can be intercepted and analyzed.  The authors note that if the same or similar messages are passed between machines at approximately the same time, that such traffic could be an indication of a stepping stone pair.  Of course, if ssh is used instead of telnet, then the text within packets cannot be used, since the data is encrypted, and the previous methods (timing, size, and direction) must then be used to trace the connection chain.  Sometimes, a cracker will foolishly telnet from one host to another and then from that host initiate an ssh session with a third host.  Since the original telnet session is not encrypted, system administrators could potentially intercept the password to the ssh session, thus defeating any encryption used by the attacker.  The set of algorithms that comprise the detection system above has been collectively named Bro, and has proven very valuable in being able to accurately detect stepping stone connections, both direct and indirect.  The authors note that on the UCB (University of California at Berkeley) network, they succeeded in identifying 47 stepping stone connections, and they are confident that their algorithms work quite accurately.

There is one problem, which the authors hastily admit, however.  A large part of telnet, ssh, and rlogin traffic is actually legitimate traffic.  Users often need to use resources on a remote machine that are not available locally.  Because of this, they, for valid reasons, use the abovementioned services to access these hosts.  The authors assert, “stepping-stone detection also requires a significant policy component for separating allowable stepping-stone pairs from surreptitious access,” [20].

Four conference papers I read propose a different approach to locating the source of denial of service attacks and defending against them.  They advocate the creation of specialized networks that can trace the attack back to its source, as well as take local measures to minimize the damage caused by the attacks.  Three different networks are proposed: CenterTrack, STM, and IDIP.
Stone asserts that system administrators can easily trace the source of an attack by installing specialized tracing routers in a network he names CenterTrack.  Under this networking scheme, border routers would be connected to these tracing routers via IP tunnels.  Upon receipt of suspicious or malicious packets, the border routers would forward the packets in question to the CenterTrack routers.  He states that by observing the tunnel through which each packet arrived, the tracking routers can relatively easily determine the ingress point of the packet, and can drop the packet, or forward it upstream to other tracing routers for more valuable back tracking information.  

The creation of such an overlay network increases the already complicated job of a network administrator, introducing new necessary administrative tasks, and increasing overall network complexity.  Stone also mentions a few other notable problems with this scheme, the first being that when a packet is forwarded, the TTL field is modified, causing an ICMP TTL exceeded message to be sent back to the source address.  This has the potential of alerting attackers to a trace in progress, however, since the majority of source addresses are spoofed anyway, this concern is negligible.  One final problem is that this particular network is not very robust against attackers from within the network, since the CenterTrack routers are connected to the ingress, and not the backbone routers [17].

Stone’s solution does seem like a feasible one, and since the majority of the problems he raises are negligible, or have solutions to them, the installation of a CenterTrack network could theoretically aid in the discovery of the source of DoS attacks.  If an attack does occur from within a network, a system administrator should have little difficulty finding the source of the attack by using a tool like NetScope to analyze traffic patterns, in order to discover the attack source, even though CenterTrack will be of little to no help in this situation.  Despite this drawback, the CenterTrack solution seems quite viable for tracing DoS attack sources.
Snoeren et al. give specifications for yet another type of network that can be implemented by extending current routers, or adding new hardware to existing routers.  They propose that SPIEs (source path isolation engines) be placed in various network routers.  These SPIEs are responsible for computing and storing a hash based on the non-changing bits of the IP header as well as eight bytes of the payload of each packet.  Bloom filters in the SPIEs compute packet digests of 32 bits, and these digests are stored in tables in DGAs (Data Generation Agents).  A series of SPIEs belongs to a SCAR (SPIE Collection and Reduction) agent and the digest tables are periodically transferred to this SCAR for long-term storage in the event that a packet trace is needed.  An STM (SPIE Traceback Manager) is responsible for tracing malicious packets to their source and it does so by taking packet digests of malicious packets and sending these packets to the SCARs in its region for analysis.  The SCARs, return individual tracing graphs of the places the packet digest was found upstream, and the STM can return a complete attacking graph of all SCARs in its region.  This allows system administrators to very quickly find the origin of an attack.  The system can be implemented in hardware or software, but there are some problems with the system.  Even though packet digests are computed rather than storing the actual packet, thus conserving space and preserving privacy, storage becomes an issue on high-bandwidth links.  The authors give a worst-case scenario of a router, which handles 32 simultaneous OC-192 links.  They state that even though their hashing algorithm requires 0.5% of the bandwidth capacity, that in this case that equals 23.4 GB of storage needed for only one minute of traffic.  Another concern is the speed at which the data must be accessed.  SRAM is the only memory fast enough to process the packets at the speed at which they travel through such a connection, however, SRAM technology limits digest tables to 16 MB.  This must be further paged to slower SDRAM in order to store one minute of traffic [15].

Sanchez et al. further the work done by Snoeren et al. stating that software based SPIEs are only good for slow to medium speed routers (up to OC-12).  Faster connections like OC-48 and OC-192 need specialized hardware support to handle the huge amount of traffic.  They note that SRAM is faster than DRAM, but that is it more expensive.  DRAM, on the other hand, is denser and does not have the heat dissipation problems that SRAM does.  The suggested method for storage of a 32 interface OC-192 as mentioned in the last paragraph is 12 to 16 digest tables composed of SRAM.  These tables would then be transferred to history memory composed primarily of DRAM.  They assert that 94 chips of 1 GB DRAM would be sufficient enough memory to hold an adequate history, and state that this solution comes at a cost of around $12,000 [11].  While the solution proposed by Snoeren, Sanchez, et al. seems feasible, and well within reasonable costs, this solution does not buy network administrators very much time.  DoS attacks would have to be discovered within a few minutes in order for this solution to work properly.  The authors note that this solution is a better solution to certain attacks, which require only one packet to deny service (WinNuke, Teardrop, and NewTear) [11].  Still, the cost per router of implementing these schemes and the small time window of opportunity gained from them is enough of a deterrent to seek better solutions.

A third type of network has also been proposed.  This network uses IDIP (intruder detection and isolation protocol) to detect possible attacks and take appropriate actions as necessary.  The authors of this paper state that since adversaries can take action at computational speeds, networks need to be capable of reacting to threats without human intervention.  They describe this system as “an application layer protocol that coordinates intrusion tracking and isolation.”  Under this scheme, a network is divided into communities, which are further subdivided into neighborhoods.  The neighborhoods are divided such that no IDIP component is located within a single neighborhood.  Rather, boundary control devices belonging to multiple neighborhoods monitor the boundaries for possible intrusion.  These devices are all overseen by a discovery coordinator, which supervises all operations for a particular community.  Each IDIP node is responsible for auditing the data flow.  When an intrusion is detected, a report of the attack is distributed to other IDIP nodes through the boundary control devices.  These nodes then can aid in the tracing of the attack and respond to the intrusion.  They also pass the report of the attack along the attack path so preparation can be made further down the line.  The nodes can take several different approaches to responding to an attack such as terminating a network connection, disabling a user account, and installing firewall rules.  Reports are also forwarded to the discovery coordinator that can oversee and give a correlated report on how the attack is being handled.  In order to prevent a local DoS attack with report messages, the nodes accumulate report data until a specified file size has been reach, or a specific time period has elapsed.  The authors also recommend cryptography techniques to prevent a malicious user from masquerading as an IDIP component and shutting down the network [14].
Author’s Views:


Traffic engineering, if done on networks that are potential victims of DoS attacks (which all are), can dramatically reduce the congestion caused by the attacks, because the distribution of traffic prevents one or two main bandwidth pipelines from being congested.  Instead, traffic is routed more evenly throughout a network, easing the load on network routers.  NetScope is an example of a good tool that network administrators can use to engineer traffic effectively over a network.  A tool like NetScope would also preclude the need for hash-based algorithms to observe network traffic as proposed by Duffield and Grossglauser.  Hashing algorithms in general complicate a router’s tasks.  Too much complication can result in the slowing of traffic routing, which is the primary concern of a router.  For this reason, I would be hesitant in recommending any router-based computations in dealing with the threat of a DoS attack.


System administrators would be well advised to create maps of upstream routers.  Traceroute can do this task, however, it will be slow.  A better recommendation is to use a system such as Mercator developed by Govindan and Tangmunarunkit.  This is a program that can be started from any network node and can create very thorough maps, given enough time.  Dynamic distance maps as proposed by Theilmann and Rothermel are a poor substitute for a map generated by a system like Mercator, in that these maps are computed as needed (i.e. in the actual throws of a DoS attack).  In such a situation, it could be too late to find out the distance between a router and the victim.  This way of computing neighbors should be relegated to less volatile network applications.


Ingress filtering as proposed by Ferguson and Senie is a very good method for ensuring that packets have valid source addresses.  The only problem with this solution is that the system currently breaks under Mobile IP.  When the Mobile IP Working Group finalizes its drafts of reverse tunneling, this would be a very valuable solution to the DoS problem; however, it would require almost global utilization by ISPs.  Ingress filtering at ISP border routers, and/or egress filtering on corporate and individual networks would control traffic where it is manageable, rather than trying to deal with the huge amount of traffic on high bandwidth backbones, where such a solution is not controllable.


Counter flood tracing, while certain to find the source of an attack suffers from some problems.  First, it may not scale well to distributed attacks, and second, the method raises some ethical issues, which the authors, Burch and Cheswick point out.  Due to these shortcomings, this particular method is not a viable solution to DoS attacks.


Probabilistic packet marking, as proposed by Savage, Song, Perrig, Dean, Franklin, Stubblefield, et al. suffers from some major problems.  While the schemes have been proven to accurately trace back attacks to multiple sources, the fact of the matter is that overloading an IP header field for something for which it was not designed is generally not a good idea.  The field was intended to indicate that a packet has been fragmented in transit, and packets that have been fragmented are dependent on this field.  The authors of these schemes note that less than 0.25 % of current Internet traffic is fragmented, which is enough to warrant overloading, so they claim.  Using these schemes however, would require the replacement of routers with those designed to specifically implement one or more of these systems.  Also, as mentioned above, hashing algorithms, unless made highly efficient, can degrade the performance of the main task a router was designed for: routing Internet traffic at the highest possible speed.  If used, these schemes would also only provide a temporary solution, as under IP version 6, the identification field has been rendered obsolete.  Due to these setbacks with PPM, our search for a DoS solution continues.


    Bellovin proposes an ICMP traceback message sent on a probabilistic basis that would alert a victim of the actual path that a packet took in route to a host, as well as provide the total number of hops through which a particular packet traveled.  The problem with this scheme is that the message is separate from the packet, and so victim may be confused as to which response was sent in regards to which traffic.  Another problem is that ICMP traffic is currently used in a variety of DoS attacks, and for this reason, some networks filter ICMP traffic.  Removing filters to receive these messages may make a network more susceptible to the very DoS attacks than this system is designed to curtail.  Wu’s intent to add on to Bellovin’s system by adding an iiB and ieB to routing and packet forwarding tables would highly complicate the BGP protocol, and really provides no added benefits over the Bellovin solution other than allowing a victim to specifically request traceback information.  Furthermore, BGP has been acknowledged by various authors to have weak authentication, which could possibly be subverted by malicious users.


Tracing packets back to the source is necessary to discover an attacker, however, attackers often hide their identities via long chains of stepping-stone systems.  Zhang and Paxson’s algorithms can effectively trace a login chain back to its source, and may prove useful in cases where a host is known to be involved in a DoS attack, however, widespread use of these algorithms is limited by the legitimate use of utilities such as telnet, ssh, and rlogin.


A CenterTrack overlay network can prove valuable in tracing a DoS attack back to its source, provided the attacker is not aware that a trace is in progress, which can be accomplished by filtering the TTL exceeded messages that are returned when the packets are forwarded to the tracing routers.  The only case in which such a solution will fail is in the event of an attack conducted from within a network.  In this case, however, a tool such as NetScope can quickly reveal the source of the attack.


An STM network, while the theory is sound, suffers from some notable problems.  Primarily at stake is the huge amount of storage required to stockpile the packet digests on high-bandwidth links.  Also the need for specialized hardware on such links makes this solution less likely to be accepted in the mainstream networking community.  In addition the amount of time that is bought by STMs is not sufficient enough for some attacks, as they cannot be detected in the first few minutes, and by the time the attack has been detected, the digest tables containing the needed packet evidence might already have been replaced by legitimate packet trails, making this solution a dubious one for wide-scale implementation.


An IDIP network is an automated network that can take actions in the event of an attack.  Such an network could be very helpful in the event of DoS attack, if the IDIP nodes were able to find a pattern in the attacking packet stream in order to adequately update firewall filters.


Having investigated all the solutions suggested by the authors I have read, it appears as though the best solution to the DoS problem currently is to conduct traffic engineering to evenly distribute traffic among links, to create an upstream router map in the event of a DoS attack, and to install a tracing network, such as CenterTrack, a defense network such as IDIP, or a combination of the two.  In the event that an attacker is traced back to an attacking host, Zhang and Paxson’s scheme could be very helpful in following a possible login chain back to the actual attacker’s source.  The other schemes currently have too many problems with their implementations, and require wide-scale distribution to be adequately effective.  In the case of ingress filtering, ISPs would be wise in implementing this unless they service clients that require Mobile IP.  If ISPs globally instituted ingress filtering, the DoS problem would quickly be solved; however, it is unlikely that such a dream will become reality in the near future.  
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