
SWOG – SEMANTIC WEB ONTOLOGY GENERATOR

Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration with my advisory committee.

Dackral Scott Phillips

Certificate of Approval:

Dean Hendrix

Juan Gilbert, Chair

Associate Professor

Assistant Professor

Computer Science and

Computer Science and

Software Engineering

Software Engineering

N. Hari Narayanan

Stephen L. McFarland

Associate Professor

Acting Dean

Computer Science and

Graduate School

Software Engineering

SWOG – SEMANTIC WEB ONTOLOGY GENERATOR

Dackral Scott Phillips

A Thesis

Submitted to

The Graduate Faculty of

Auburn University

In Partial Fulfillment of the

Requirements for the

Degree of

Master of Science

Auburn, Alabama

August 5, 2002

SWOG – SEMANTIC WEB ONTOLOGY GENERATOR

Dackral Scott Phillips

Permission is granted to Auburn University to make copies of this thesis at its discretion, upon request of individuals or institutions and at their expense. The author reserves all publication rights.

Dackral Scott Phillips

Date

Copy sent to:

Name

Date
© 2002

Dackral Scott Phillips

All Rights Reserved

VITA

Dackral Scott Phillips was born on August 20, 1978 as the son of Myrlon Scott and Mauara Phillips of Oneonta, Alabama. He graduated from Oneonta High School in 1996, and went on to graduate summa cum laude with an Associates of Science degree in Computer Science from Wallace State Community College in August of 1998. Thereafter, he received his Bachelor of Science degree in Computer Science from Auburn University in May of 2001, graduating cum laude. He entered Graduate School at Auburn University in June of the same year.

THESIS ABSTRACT

SWOG – SEMANTIC WEB ONTOLOGY GENERATOR

Dackral Scott Phillips

Master of Science, August 5, 2002

(B. S., Auburn University, 2001)

112 Typed Pages

Directed by Juan Gilbert

The semantic Web offers many benefits for Web users, ranging from smarter search engines, to devices that can interact with each other. In order to provide the semantic Web with the artificial intelligence backbone it needs to facilitate the abovementioned tasks, as well as many other unmentioned abilities, ontologies, or computer-readable definitions of terms must be created. Because of this, this paper describes SWOG (Semantic Web Ontology Generator), a software system that has been specifically designed to facilitate this task. It provides tools whereby authors can easily create ontologies by offering syntax help, shortcuts, and highlighting. Using SWOG, ontology authors will be able to gain an understanding behind the syntax used in the semantic Web, and semantic Web agents will be able to make inferences from the ontologies produced by the system.

ACKNOWLEGEMENTS

First and foremost, I would like to thank Christ Jesus, my Lord and Savior; for He has blessed me so richly with talents and abilities, without which my life, and education would not have been possible. Secondly, I would like to thank my family who encouraged me to pursue my master’s degree. Thirdly, I would like to thank my church family, whose prayers and support I have both felt and needed during the process of writing this work. I thank my advisor, Dr. Gilbert, who has aided me immensely in time, resources, and support in this research endeavor; the Computer Science and Software Engineering Department of Auburn University for making this dream a reality; and all of my teachers from kindergarten to college for giving of your lives to help shape mine. I would also like to thank the wonderful people at Sun Microsystems for all of their online Java Swing tutorials, without which this software project would not be possible.

Style manual or journal used: IEEE style guide

Computer software used: Microsoft Office Word 2000

TABLE OF CONTENTS

LIST OF FIGURES
……………………………………………………………...
 x

LIST OF TABLES
……………………………………………………………...
xi

1 INTRODUCTION
……………………………………………………………..
 1

1.1 THE WORLD WIDE WEB
……………………………………...
 2

1.2 THE SEMANTIC WEB
……………………………………………...
 4

1.3 SEMANTIC WEB LANGUAGES
………………………….…..
 5

1.3.1 XML
……………………………………………………...
 5

1.3.2 RESOURCE DESCRIPTION FRAMEWORK
……………...
 6

1.3.3 RDF SCHEMA
……………………………………………...
 9

1.3.4 DARPA AGENT MARKUP LANGUAGE + ONTOLOGY

INFORMATION LANGUAGE
……………………...
11

1.3.5 DUBLIN CORE
……………………………………………...
12

1.4 SEMANTIC WEB EXAMPLE
………………………………….…..
15

2 RELATED RESEARCH
……………………………………………………...
18

2.1 ITTALKS
……………………………………………………………...
18

2.2 FABL
……………………………………………………………...
19

2.3 OILED
……………………………………………………………...
20

3 SWOG IMPLEMENTATION
……………………………………………...
23

3.1 SWOG APPLICATION DESKTOP
……………………………...
25

3.2 SWOG ONTOLOGY EDITOR
……………………………………...
28

4 CONCLUSION
……………………………………………………………...
36

REFERENCES
……………………………………………………………...
38

APPENDIX
……………………………………………………………………...
40

LIST OF FIGURES

Figure 1
A BNF Grammar for RDF
…..………………………………….
 8

Figure 2
Semantic Web Proposed Architecture
……………………...
14

Figure 3
Web Timeline – Past to Future
…………..………………….
15

Figure 4
SWOG Opening Splash Screen
…………..………………….
25

Figure 5
SWOG Application Desktop
…..………………………………….
25

Figure 6
SWOG Help Browser
…………..………………………………….
28

Figure 7
SWOG Ontology Editor
……..……………………………….
29

LIST OF TABLES

Table 1
Semantic Web Languages and Roles
…………..……………….…
 4

Table 2
RDFS Primitives and Descriptions
…………..……………….…
10

Table 3
Dublin Core Ontology Primitives and Descriptions
…………….
13

1 INTRODUCTION

The World Wide Web in its current form is a collection of Internet accessible, human-readable pages that are written in hypertext markup language (HTML) and located on servers throughout the globe. There is no central agency that is responsible for adding content to the Web, which gives any individual with access to a web server the ability to add information to it. As more and more people enter the online scene, the Web keeps growing. Since there is no central agency responsible for keeping track of the content on the WWW, this poses a problem. Because websites are only human-readable, it is sometimes a daunting task to find information. Search engines aid users in finding relevant data, however, as the web is increasing in size yearly, it is becoming harder and harder to find relevant pages merely by keyword searches. Google, a popular web search engine currently indexes 2,073,418,204 web pages [1]. Finding relevant information from keyword searches on these two billion pages can be quite a chore, as keyword searches often result in a number of false positives. Because of this, Tim Berners-Lee, the founder of the World Wide Web, in conjunction with other web developers at the World Wide Web Consortium (W3C) have proposed an extension, or restructuring of the web to provide machine-readable information on it, to allow smarter searches, and a whole slew of other technological possibilities.

In order to create the “semantic Web,” as this endeavor has been termed, web authors will need to supply metadata to provide information about the content currently

available on their pages. These metadata can be contained in documents that are known in artificial intelligence jargon as ontologies. In order to write ontologies, web languages such as resource description framework (RDF), RDF schema (RDFS), and the combined languages of Darpa agent markup language and ontology information language (DAML+OIL) have been proposed by the World Wide Web Consortium. Web information authors can construct ontologies in these languages in order to offer semantic Web agents with the metadata information that they need in order to make inferences about the content that a website contains. a Semantic Web Ontology Generator (SWOG) that aids in the creation of these ontologies has been implemented. The SWOG software system is the subject of this thesis, however, before beginning this discussion of the system, a background of the World Wide Web as it now is, as well as an overview of the semantic Web will be presented.

1.1 The World Wide Web

The Web is the brainchild of Tim Berners-Lee, who worked for the European Center for Nuclear Physics Research (CERN). In 1990, he developed the World Wide Web hypertext system in order to improve communication between members of the physics research community. At the time, pertinent research information was in electronic form, however, there were a variety of different protocols used by the machines on which the information resided that posed stumbling blocks to other machines desiring to retrieve the information. In order to solve this perplexing protocol problem, Berners-Lee created the hypertext transfer protocol (HTTP) as a backbone whereby machines can communicate with each other. Pages read by machines that understand this HTTP protocol are written in HTML. These pages, called resources, are stored on web servers and are found through uniform resource locators (URLs). Software programs that can read and display web pages are called web browsers. This hypertext system allows users to quickly navigate from URL to URL via links. Because users can navigate seemingly from any page to other pages, it creates a mesh or web of online resources, and since this system has caught on and now become global, it has received the appellation “World Wide Web.” As of May 1993, only 50 or so websites existed worldwide, however, because CERN released much of Berners-Lee’s protocols into the public domain, web technology soon spread on a global scale. The technology was extended to a greater degree when the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign (NCSA) created the Mosaic web browser to make use of HTTP, and thus the graphical browser was born [2]. Since 1990, when the web was invented, it has gained both users and authors at an almost exponential rate. Better web browsers, like Netscape and Microsoft’s Internet Explorer have also improved the web browsing experience for users. This brings us to the current state of the web that we have today. However, Berners-Lee and others at the World Wide Web Consortium are not satisfied with the status quo, and have been laying the groundwork for the future of the WWW, the semantic Web.

1.2 The Semantic Web

The semantic Web is an extension of the current Web that is built on inference metadata. Rather than using HTML as the basis language for semantics, several different languages have been proposed to offer the functionality needed for the logical nature of this new inference-based Web. Most of these languages are built on XML (eXtensible Markup Language), and provide the flexible XML syntax structure with meaningful ontology-related tags. As of present, there are three languages that have been adopted by the W3C as the official languages of the semantic Web. More may follow later, but for now, these three basis languages are the resource description framework (RDF), RDF Schema (RDFS), and Darpa Agent Markup Language combined with the Ontology Information Language (DAML+OIL). Table 1 describes the roles of these languages in the semantic Web.

	XML
	Basis language for web agent use

	RDF
	A model for metadata syntax

	RDFS
	Ontology vocabulary definitions

	DAML+OIL
	Formal semantics and reasoning primitives

Table 1 Semantic Web Languages and Roles [3]

1.3 Semantic Web Languages

The languages shown in Table 1 each play a role in providing either structure, or meaning to the semantic Web. All four of the languages mentioned provide a unique usefulness in metadata description, which will next be described.

1.3.1 XML

XML is quickly becoming the emerging standard of data representation and exchange on the web. Using XML as a basis language for the foundation of ontologies greatly simplifies the task of writing ontology parsers. It allows authors the ability to create their own markup, such as <document></document>. On the surface, it may seem as if XML itself offers some semantic support, however, it should be noted that the tags themselves provide no meaning whatsoever. It does, however, have the benefit of allowing human readers to predict what type of information might lie between the two tags.

Document type definitions (DTDs) allow some semantic information to be encoded directly into XML. DTDs function somewhat as dictionaries in XML documents by listing terms, however, DTDs are too numerous to have just one standard for every ontology, and even they do not have the capacity to define relationships between the different terms contained in them [4]. Due to these shortcomings, XML is a suitable foundation on which to build, but not adequate enough to offer the rich semantic support needed for ontology definition. In order to provide a semantic basis for ontologies, languages such as the resource description framework (RDF) must be used.

1.3.2 Resource Description Framework

While XML provides a common grammar structure for parsing semantic Web documents, RDF provides a foundation for describing and processing metadata. The language allows for interoperability between semantic Web agents whereby information sharing and inference making are facilitated. Through RDF, agents are able to process resources, leading to a wide variety of abilities such as discovering, cataloging and rating, them, and the data contained therein as well.

Named properties and property values provide the foundation for RDF. The data model in RDF consists of three elements: resources, properties, and statements.

· Resources are the subjects of all RDF statements. They may refer to a document on the web, a group of documents, a single element of a particular document, or even a real world resource, such as a book. They are always denoted by uniform resource locators (URLs).

· Properties are adjectives or verb phrases that are used to describe an aspect, attribute, characteristic, or relation of a resource. Each property has a specified meaning, value that it can have, type of resource object that it can describe, and a relationship to other properties.

· Statements are the combination of the previous two elements into a sentence of sorts. A statement is comprised of a resource (or subject), a property (or predicate), and the value of the property (or object) [5].

An example of an RDF Statement would be http://www.auburn.edu/~phillds has author Dackral Phillips. In XML structure, the previous statement would look like this:

<rdf:RDF>

<rdf:Description rdf:about="http://www.auburn.edu/~phillds">

<hasAuthor>Dackral Phillips</hasAuthor>

</rdf:Description>

</rdf:RDF>

Of course, the hasAuthor property does not exist, and would need to be defined if this were an actual ontology, but this example demonstrates how RDF can easily facilitate the creation of semantics. Figure 1 gives an exhaustive Backus-Naur form (BNF) grammar of the RDF language.

[image: image1.jpg][6.1) RoF [1<xd€:R0F>1) oby+ ['</rdf:RDE>!
[6:2) oby description | contalner.
(6.3] dsseription "<raf:Description’ idAbouthtir? hagIdAter? prophtirs '/>
1<rdf:Deseription’ LdABoutAtLr? hagIdMtr? propAttzs '>
propartySlie 1</zdf:Dascriptions!
typediods
(6.4 contatner sequence | bag | alternative
[615) Lanboutaces saneer | sboutater | shostzachacex
[6.6) Lancee 011 Tosymbol 't
[6.7) aboutacex !+ about-" URI-reterence
[618) aboutzachatts :i- ! aboutZach-"! URI-zaference !0
'+ ShoutsachPratix-nt string
(6.9 bagraneex bagio-"t Tosymbel M
(6:10] propattz eypentes
| propane 1=t stxing 1! (wlth enbedded quotes sscaped)
(6.11] typentts * typecrt URI-referance !
(6.12] propertysie 1< propiane sdhtez? 1> valus '</! propams 1>
| 1< propNans iahtee? parssiitaral >
Titeral 1</ peopiane '>'
| 1< propiane idncir? parseesovice '>
PropertySite 1</ prophame '>'
1< propiane idRefattr? bagldhtir? prophttrs />
(6.13] typeaiode 1< typedane Ldaboutater? bagldhtir? propaters />
| 1< typeNane abouthtir? bagdhtts? prophtire '>
propertySie 1</" typenams 1>'
(6.14) propmans Gnane.
[6115] typeniane Gnane
[6.16] Lamernree idatee | resouscentr
[6117] value by | steing
[6118] resouscenter " resouzcan' URi-ratarance 10
[6.19] Grane [mSpretix ':0 | nane
[6.20] URI-reference :i- string, interpreted per [URI]
[6121] Tosymbol (any Legal XL nane symbol)
[6:22] nane (any Legal L nane sysbol)
[6123] mspretix (any Logal M namespace prefix
[6126] string (any X0 text, with "<r, "%, and "ev escaped)
[6125] sequence 1Cxdf:iseqt Ldhttre '>1 pembert '</xdf:Seq!
1<xdfiSeq! Ldattr? memberatirs />
(6.26] bag 1<xdfinag! Ldncer '>1 membert 1</xdf:3ag>!
1<xdfinag! Ldactr? memberatirs />
[6.27) alternative 1rdfiAlt! Ldncer '>1 membert </xdf:Ale>!
1<rafiAle! sdatere membesacer? />
[6.28) mesber retexencedrten | inlineIten
[6120] referanceditem :i- '<xdf:li! resourcentes '/>:
[6130] inlinatten 1xfi1i 151 value </edtiLl>
| 1<xaeill parseliteral '>' literal </xdf:li>
| 1<xdfi10" parseResource 1> propertyEltt </ede:li>:
[6.31) memberaces +rat:_an" stxing 1" (uhers & ls an integer)
[6132] parselireral Litaral
[6.33] parscresouece resouzca”
[6:30] Liceral (any well-torned 20

Figure 1 A BNF Grammar for RDF [5]

One shortcoming of RDF is that ontology authors are not able to create user defined objects and properties. For this reason, RDF cannot provide all of the inferential reasoning needed for the semantic Web to function.

1.3.3 RDF Schema

RDFS
extends RDF by providing developers with the ability to define a vocabulary for RDF data. RDFS also allows semantic Web authors specify the object types to which RDF statements may be applied. RDFS expressions are valid RDF statements. In the example used to demonstrate RDF, the hasAuthor property was not defined. RDF does not have the capacity to give a definition to this property. This is the role that RDFS plays. It gives an ontology author the ability to specify names for objects and properties using predefined terms such as Class, subClassOf, Property, subPropertyOf, etc. [6]. Using RDFS, the hasAuthor property could easily be defined as follows:

<rdfs:Property ID="hasAuthor">

<rdfs:label>Has Author</rdfs:label>

<rdfs:comment>Indicates the author of a particular resource.</rdfs:comment>

<rdfs:range rdf:resource="http://www.w3.org/2000/01/rdf-schema#Resource"/>

<rdfs:domain rdf:resource=" http://www.w3.org/2000/01/
rdf-schema #Resource"/>

</rdfs:Property>

Table 2 provides the primitives offered by RDFS and the functions they play in adding content to the semantic Web.

	Class
	The concept of a Class.

	Resource
	The most general class that describes a URI.

	Property
	A characteristic of a class.

	Literal
	The set of atomic values, e.g. textual strings.

	Container
	Represents the set Containers.

	ContainerMembershipProperty
	Represents the property of belonging to a Container.

	ConstraintResource
	Resources used to express RDF Schema constraints.

	ConstraintProperty
	Properties used to express RDF Schema constraints.

	comment
	Used to provide an explanation of the ontology term.

	label
	Provides a human-readable version of a resource name.

	subClassOf
	Indicates membership of one class inside another.

	subPropertyOf
	Indicates specialization of a property.

	domain
	Associates a class with properties that it can have.

	range
	Properties that can be used to provide constraints.

	seeAlso
	Indicates a resource providing information about the subject resource.

	isDefinedBy
	Indicates a resource defining the subject resource.

Table 2 RDFS Primitives and Descriptions [7]

For the most part, RDFS provides the ability to make inferences about resources, classes, and properties, however, it is lacking in much of the functionality needed to provide an artificially intelligent backbone to ontologies.

1.3.4 Darpa Agent Markup Language + Ontology Information Language

One of the ways that RDFS falls short is in the absence of an equivalence relation. In RDFS, there is no way to specify that the concepts person, human being, and homo sapiens are equivalent terms. DAML+OIL fills in these types of gaps that RDFS neglects. To solve the previous problem, the sameClassAs primitive allows an ontology author to state that all of these classes are just synonyms.

DAML+OIL adds mathematical and set based logic to the ontology inference capabilities of RDF and RDFS. It is a rather extensive language and for this reason, the primitives have not been given in a table, however, the reader is advised to refer to [8] for an in-depth description of the terms available.

Using DAML+OIL adds more functionality to ontologies than is available through RDFS. Not only can classes and properties be equivalent to each other, but restrictions can also be placed on these classes and properties such that a property can only apply to a certain class, or a class can only be a subclass of another class if certain requirements are met, etc. Using DAML+OIL primitives
, an ontology author can specify such things as “animals have 2 parents, one female and one male;” “a graduate student must have a bachelor’s degree;” etc. that cannot be said using RDFS primitives alone. By using DAML+OIL, semantic Web ontology creators have a full set of logical primitives at their disposal, allowing them to fully express the complexities of even the most advanced ontology. In addition to expression primitives, however, ontologies need metadata that express information about themselves.

1.3.5 Dublin Core

While not an actual language, the Dublin Core is a series of ontology tags that provide information about a Web resource. Ways to use the Dublin Core in HTML are already available, and outlined in RFC 2731. The author of this RFC describes the Dublin Core as a “small set of metadata elements for describing information resources,” [9]. And while the RFC demonstrates Dublin Core syntax for use with HTML 4.0, the author states that XML and RDF, “promise a significantly more expressive means of encoding metadata,” once they are standardized [9]. Table 3 outlines the Dublin Core ontology primitives, and gives a description for their use.

	title
	A name given to the resource

	contributor
	An entity responsible for contributions to the resource

	creator
	An entity responsible for making the content of the resource

	publisher
	An entity responsible for making the resource available

	subject
	The topic of the content of the resource

	description
	An account of the content of the resource

	date
	A date in the life cycle of the resource

	type
	The nature or genre of the content of the resource

	format
	The physical or digital manifestation of the resource

	identifier
	An reference to the resource within a given context

	language
	A language of the intellectual content of the resource

	relation
	A reference to a related resource

	source
	Resource from which the present resource is derived

	coverage
	The extent or scope of the content of the resource

	rights
	Information about rights held in and over the resource

Table 3 Dublin Core Ontology Primitives and Descriptions [10]

The Dublin Core provides ontology authors with the ability to give information about the resource itself. It provides information about ontologies in much the same way as META tags function in HTML, however, they go beyond the information, which META tags currently provide.

Each language presented plays a role in the construction of the semantic Web. Figure 2 demonstrates the proposed architecture of all of these components as they work together.

[image: image2.jpg]Dublin
Core
element

e Ontology support

Narespaces XML-Scherna

XML - Structured documents

Universal Resource Identifiers (Unicode)

Figure 2 Semantic Web Proposed Architecture [11]
As shown in the diagram, URIs (Uniform Resource Identifiers) – essentially the same thing as URLs – and Unicode lay the base foundation for the semantic Web. At these URIs, XML structured documents are encoded with namespace information through XML Schema. RDF and RDFS then provide the syntax layer for semantics, and DAML+OIL provides ontology support and logic through inferences that machines need to “understand” the data. The Dublin Core Elements Set provides identification and information about the document. The last few components (Proof, Web of Trust, and XML Digital Signatures) are still in the works, however, when completed, they will offer secure transaction abilities via the semantic Web, such as allowing a software agent to pay a user’s bills online with little to no human interaction needed. While these options are not available now, Figure 3 gives a timeline showing the web from the past to the present, and gives an estimate as to when the technology will be available to accomplish these transactions.

[image: image3.jpg]Trusted
Web
Resources

Proof, Logic and

Sntiioeyd dnzusces Shared terms/terminology
Machine-Machine commumication|
2010
Resource Description Framevork -
eXtensible Markup Language Self-Describing Documents 2000

HyperText Markup Language

Hyper Text Transfer Protocol Foundation of the Current Web

1990

Figure 3 Web Timeline – Past to Future [12]

1.4 Semantic Web Examples

Having outlined the languages of the semantic Web, some of the usefulness this Web-to-come will have will be demonstrated. Revisiting the search engine scenario that was presented in the introduction, an example of how semantic Web search engines browsing ontologies can result in fewer false-positives follows. Take the hypothetical example of a user who is looking to buying a new automobile. This user is somewhat luxurious in the cars, which he buys, and so he wants to find information about Jaguars. Using merely a keyword search of car and Jaguar in today’s search engines would offer results containing the words car and Jaguar on the same page. One might be shown web pages of local zoos that have parking garages and jaguars, a result not even related to the desired information. Using the semantic web, however, the search engine would more than likely determine that the user wants to search for a class car with the instance Jaguar, and might return links to a Jaguar dealership in the vicinity of the user if it has a concept of the user’s location.

From this simple demonstration, it is quite apparent that the semantic web will allow a specialization and categorization of information. Processing information using contextual or semantic information is closer to the way in which we as humans think. If someone were to say the word “Jaguar” to a person, one of two images would come to mind: either that of a car, or of the animal. Furthermore, if one further clarified by saying, “makes exquisite automobiles,” all ambiguity about the object in question vanishes. Ontologies will pave the way to this type of machine understanding. There are other possibilities for the semantic Web as well, besides just information retrieval.

 The semantic Web will offer a wide variety of computer related applications not currently available under today’s World Wide Web. Berners-Lee foresees not only the chances for improved search engine capabilities, but also the ability of devices to interact with each other, as well as their human users. In an article in Scientific American, one possibility of such semantically enabled devices was portrayed. Suppose a telephone stereo, and T.V. are in a room with the user and the phone rings. A semantically enabled telephone might have the ability to broadcast messages to the T.V. and stereo to turn their respective volumes down when a user answers a call. The possibilities are almost limitless. Computers could in theory plan out our schedules, give us the shortest routes to work or school in the case of road construction detours, make doctor appointments for us, and a myriad of other things [13].

2 RELATED RESEARCH

There are many other projects that pertain to the semantic Web that are currently undergoing research. Before discussing SWOG, the topic of this paper, the reader will be informed of three other projects currently in progress that deal with the semantic Web. The first, ITTALKS is an agent that makes use of the Web to inform users of IT (Information Technology) seminars taking place in or near their location. Fabl, the second project referenced is a proof-of-concept language that provides RDF with much of the functionality that Javascript provides for HTML. The third system is an ontology editor named OilEd.

2.1 ITTALKS

Researchers at the University of Maryland, Baltimore County have developed a web portal that automatically and intelligently informs users of IT technology seminars. It is built on the DAML ontology language (a predecessor of DAML+OIL). The developers have given it a quite extensive vocabulary that is able to make inferences about events, times, and locations. It also has conversational communication abilities and can cater to a user’s personal interests, which it discovers through a personal profile written in DAML. This personal profile can be created by the user through the aid of the system, or other external agent. Though the system can be used anonymously, providing this personal profile allows ITTALKS to tailor the information to more closely match the

interests of the user. In addition, information retrieved by ITTALKS can be displayed in a variety of formats, including DAML, HTML, RDF, and WML.

The ITTALKS system uses semantic Web technologies to alert a user only of seminars being conducted within a specified radius from his/her location, determined by the system from inferences made based on the location the user specifies in his/her profile. If a user has a scheduling agent, or informs ITTALKS of his/her schedule, ITTALKS can actually judge which talks a user can attend, and no alerts will be sent for talks that conflict with the user’s timetable. The authors feel that, “by combining the features of currently existing web applications with the DAML based knowledge and reasoning capabilities, ITTALKS presents a true semantic Web application,” [14].

ITTALKS demonstrates several of the possibilities available through the semantic Web. The system can make inferences about time, space, and distance in the real world from information the user supplies. It is also able to interact with other semantic Web agents to gain personal information that a user wishes to release, and can use this information to inform the user of seminars that are at a convenient time, of interest, and within reasonable driving distance. Smart applications such as ITTALKS will become more and more commonplace as semantic Web ontologies become mainstream.

2.2 Fabl

HTML programmers have long appreciated Javascript for the functionality it provides to bland text-based pages. In the semantic Web, a language like Javascript would certainly be useful. It would allow ontology authors to actually make inferences about information either in the ontology itself, of from an external source and use this information dynamically. Chris Goad, from the Behavior Engine Company, has developed a proof-of-concept language strictly for that purpose. Fabl (pronounced “fable”) is a scripting language that has approximately the same execution speed of Javascript and Python, and conforms to the familiar Javascript/HTML/XML/document object model (DOM) web-programming structure. However, it goes beyond Javascript by adding types and qualified property names. The language components are written as RDF resources, as is the data over which the language functions. The majority of Fabl is written in the language itself, and because of this, functionality can be broadened very easily by simply adding the RDF ontology data necessary for the needed extension [15]. The possibilities Fabl offers to the semantic Web are numerous, nevertheless, the language has not been adopted by the World Wide Web Consortium as the official semantic Web scripting language.

2.3 OilEd

OilEd is a semantic Web ontology editor that allows users to construct OIL and DAML+OIL based ontologies. It is mainly a prototype editor that has been developed by researchers at the University of Manchester in the UK. The authors of this system designed it with a frame-based layout, written in Java Swing. In addition, they have added an integrated reasoner to streamline user ontologies. The authors however, do state that their system is lacking in a number of areas: most notably, in a versioning system, and for integrating multiple ontologies [16].

While OilEd is a very intuitive semantic Web ontology editor, an evaluation of the product revealed a lack in more areas than what the authors mentioned. One shortcoming is the lack of help available to a user. The application has mainly been designed for users with ontology experience, but not necessarily for those with programming knowledge, as can be seen from the point-and-click GUI interface. There are many textboxes, checkboxes, and other graphical components that only those with knowledge and experience with RDF, RDFS, and DAML+OIL would be able to use, nevertheless, the application does not grant a user direct access to the ontology source code.

While SWOG is not meant to be a rival editor to OilEd, it is an editor that has been aimed at a different user group. Based on experiences with HTML web authors, there are two main types of users. Those who are not programming savvy tend to use WYSIWIG programs such as Microsoft Front Page, or Netscape Composer to design web pages; whereas those who have a knowledge of the language tend to like editors that allow them to directly manipulate the source code. In all likelihood, the same is true of writing ontologies as well. Those with little programming experience will enjoy the ease of use that OilEd provides, while those that have knowledge of XML and the ontology primitives will be more adept at viewing and manipulating the source code afforded by SWOG.

The semantic Web will offer users many opportunities that are not currently available under the present-day Web. One can see some of the potential that can be offered by semantic Web applications like ITTALKS that can make inferences on user data and interact with the user. In addition, scripting languages like Fabl will allow the same functionality of current languages like Javascript, but will go beyond the abilities presently offered by them by being able to interact with much of the metadata available in the ontology. This will lead to more powerful inferences that can be made, increasing the overall utility of the semantic web. Users that are not technically oriented are encouraged to gain information on OilEd, as it is a system utilizing point-and-click methods to create ontologies.

3 SWOG IMPLEMENTATION

While the foundation of the semantic Web is comprised of the languages previously discussed (XML, RDF, RDFS, and DAML+OIL), the semantic Web is lifeless without ontologies created by users. These ontologies are the things that actually give the semantic Web meaning; that allow data mining to be conducted in a more efficient way than it currently is; that allow inferences to be made by machines about the data contained on a page. Since the very crux of this inferential Web depends so heavily upon user-created ontologies, it is imperative that software systems be written that provide users with the abilities necessary to quickly and easily create them. Kim states,

It is predicted that ontologies for the semantic Web may be widely adopted if there are ontology development tools that can be practically used by knowledge workers, not necessarily by ontologists (specialized ontology modelers). The tool will be evaluated on factors such as ease of use, and capability to express rich concepts without complex knowledge representation expertise. [17]

Taking Kim’s statement into consideration, SWOG – Semantic Web Ontology Generator has been written as an ontology development tool that can be used by programmers or knowledge workers with a basic understanding of the RDF, RDFS, and DAML+OIL ontology languages. It has been designed with a text editor look and feel, for comfort and

ease of use, and also gives the user the ability to add ontology information as he/she sees fit, without restricting him/her to only a small portion of functionality available in most current systems. Also included is a system of source code skeletons that users can fill-in quickly and easily to create ontological concepts, without restricting the user to a mere handful of primitives. An in-depth look at the SWOG software system follows.

SWOG is written in Java Swing, which while slower than native machine code, allows it to be run on multiple platforms such as Unix and Macintosh, though it was designed and tested primarily on a Microsoft Windows ® based computer. The application is quite lightweight in its current form, with all class files, images, and help files consuming less than 500 kilobytes of storage. This allows the application to easily fit on a floppy disk, and also lends itself to being run from the web. The full source code, which is presented in entirety in the appendix, consists of approximately 3700 lines of Java code. It has been tested to run under the Java 1.3.1 JDK, and any system having this version or later of the JDK is able to run the application.

The system, when first opened, displays a splash screen very briefly. Figure 4 depicts this splash screen window.

[image: image4.png]Semantic Web
Ontology
Generator

Copyright (C) 2002 by Dackral Scott Phillips. All Rights Reserved.

Figure 4 SWOG Opening Splash Screen

3.1 SWOG Application Desktop

After the application is loaded, a blank application desktop is presented, as shown in Figure 5.

[image: image5.png]Fle Windows Settings Help

Figure 5 SWOG Application Desktop

From this application desktop, the user can open one or more ontology editors, discussed later, by accessing the file menu, and choosing either “New Desktop” or “Open Desktop” from the “File” menu. In the latter case, the user will be prompted by a dialog box for a file name to open. The user may also choose to “Save All” open files, and “Close All” open files from this menu, as well as to “Exit SWOG.” If one or more windows have been modified when choosing the latter two options, the user is prompted to save the files by way of dialog boxes.

The “Windows” menu contains two options, “Refresh” and “Cascade Windows.” If a user chooses to refresh, the application and all open ontology editor graphical user interface (GUI) components will be redrawn. The cascade option organizes all of the open editors by cascading them on top of each other beginning in the upper left hand corner of the application desktop, and continuing to the lower right.

The “Settings” menu contains one submenu entitled “Look & Feel.” This submenu contains three radio button menu choices: “Metal,” “Motif,” and “Windows.” Metal is the default look and feel when the application is first opened. The motif look and feel gives the application a Unix Motif GUI appearance in its windows, menus, and toolbars. The Windows look and feel gives a Microsoft Windows ® appearance to these components.

The “Help” menu contains five choices: “Help Contents,” “SWOG Help,” “Semantic Web Help,” “License,” and “About.” By clicking on any one of these choices, an external help browser window is displayed. The help window is a fully functional web browser, complete with location bar, forward, back, and home buttons, which displays the help files, written in HTML format. A user may select one of two options on viewing help, “Contents” and “Index” which can be chosen from the “Help Type” menu. The contents page, which is the default when first opened, allows the user to surf to predefined titled sections of the page, based on name. The index page, offers somewhat more flexibility, in that not only are the sections enumerated, but links to keywords taken from various sections are linked as well, allowing a user to jump to almost any topic that contains a word or phrase of interest to him/her. A screen shot of the help browser is shown in Figure 6.

[image: image6.png]jBntology Generator [Help]

Topics_Heln Tywe
[Q]®] [&] [iencwocuments ans setingsiamimstatorDesopmesisic]

Semantic Web
Ontology
Generator

Contents

SWOG

Semantic Weh
License

About

Credits.
Acknowledgments

Figure 6 SWOG Help Browser

3.2 SWOG Ontology Editor

The ontology editor is where the user creates ontologies. One can see from Figure 7 that it contains a menu bar, as well as toolbars that are above and below the text editing portion of the window. As the user types, the application does syntax highlighting (described later) on the user’s text, by identifying keywords taken from the XML, RDF, RDFS, DAML+OIL, Dublin Core, and OilEd namespaces.

[image: image7.png]5] [untitied Ontology 1]
Fle Edt_ Syntax Help

|BjaEE [$]n[u) [2le] @)

e o B @EED

Figure 7 SWOG Ontology Editor

The ontology editor “File” menu contains five options: “Clear,” “Open,” “Save,” “Save As,” and “Close.” The “Clear” selection, removes all typed text from the editor window. If the window has been modified, it first prompts the user to save via a dialog box. The “Open” command prompts the user for a file to open through a dialog box, and then proceeds to load the contents of the XML or DAML document into the editor pane. Syntax highlighting (described later) takes place while the document is being loaded. The “Save” and “Save As” choices allow the user to write the contents of the editor pane to disk. Finally, the “Close” option disposes of the current editor window, while leaving the application and all other ontology editors open. If any modifications have been made to the current window, the user is prompted to save his/her work by way of a dialog box. The “Clear,” “Open,” “Save,” and “Save As” commands also appear in icon form as the first four choices on the toolbar below the menus.

The “Edit” menu contains six possibilities for selection: “Undo,” “Redo,” “Cut,” “Copy”, “Paste,” and “Select All.” The “Undo” command functions as a user would expect it to do, recording the last few actions that a user has made such that when a mistake is made, it can be undone to a state before the error occurred. “Redo” is similar in that is redoes what a user has just undone. “Cut,” “Copy,” and “Paste” work as intended as well, with “Cut” deleting the highlighted text and placing it in the clipboard, “Copy” doing the same except that the text is not deleted, and “Paste” inserting text from the clipboard into the document. “Select All” highlights all of the text currently contained in the editor pane for fast deletion, cutting, or copying. These menu choices are also contained both in icon form on the toolbar, as well as within a popup menu accessible when the user performs a “right- click.”

The “Syntax” menu is what separates SWOG from being merely a normal text editor. It contains three submenus: “RDF,” “RDFS,” and “DAML+OIL,” as well as five menu commands: “Ontology Skeleton,” “Class Skeleton,” “Object Property Skeleton,” “Datatype Property Skeleton,” and “Individual Skeleton.” The three submenus provide access to language primitive menu options that create ontology source code skeletons to be completed by the user. The options available in these menus are too numerous to list, however, they offer an adequate coverage of almost every element available in the three standardized ontology languages mentioned above. The five menu commands give the user access to blocks of ontology code that can be quickly modified or completed to satisfy a user’s needs. The “Ontology Skeleton” command inserts the following block of code into the currently opened ontology:

<?xml version=1.0 ?>

<rdf:RDF

xmlns:xsd="http://www.w3.org/2000/10/XMLSchema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:daml=http://www.daml.org/2001/03/daml+oil#"

xmlns:dc="http://purl.org/dc/elements/1.1/"

xmlns:oiled="http://img.cs.man.ac.uk/oil/oiled#">

<daml:Ontology rdf:about="">

<dc:title></dc:title>

<dc:contributor></dc:contributor>

<dc:creator></dc:creator>

<dc:publisher></dc:publisher>

<dc:subject></dc:subject>

<dc:description></dc:description>

<dc:date></dc:date>

<dc:type></dc:type>

<dc:format></dc:format>

<dc:identifier></dc:identifier>

<dc:language></dc:language>

<dc:relation></dc:relation>

<dc:source></dc:source>

<dc:coverage></dc:coverage>

<dc:rights></dc:rights>

<daml:versionInfo></daml:versionInfo>

</daml:Ontology>

</rdf:RDF>

This block of code declares the document to be XML, initializes namespaces so that ontology primitives can be found at the given URL locations, declares an Ontology, and then creates a Dublin Core element block. The user can go through and fill in all of the fields that he/she desires, and either ignore or delete the rest.

The “Class Skeleton” menu item inserts a similar, yet shorter syntax skeleton, shown below:

<daml:Class rdf:about="" rdf:ID="">

<rdfs:label></rdfs:label>

<rdfs:comment></rdfs:comment>

<oiled:creator></oiled:creator>

<oiled:creationDate></oiled:creationDate>

</daml:Class>

This skeleton allows a user to define his/her own ontology class, by merely filling in the tags and quotes with relevant information.

The “Object Property Skeleton” command works much like the other two previous items, in that it produces the barebones source code needed to define an object property. Classes that have been created with the previous block of code can be given properties through this structure, shown below:

<daml:ObjectProperty rdf:about="" rdf:ID="">

<rdfs:label></rdfs:label>

<rdfs:comment></rdfs:comment>

<oiled:creator></oiled:creator>

<oiled:creationDate></oiled:creationDate>

</daml:ObjectProperty>

The “Datatype Property Skeleton” is exactly like the “Object Property Skeleton” in structure except that daml:DatatypeProperty replaces daml:ObjectProperty in its declaration. Because of this, its code block is not shown.

The final available menu option in the syntax menu is the “Individual Skeleton” command. The purpose of this item is to create an instance of a class that has been previously defined. The skeleton produced by it appears below.

<rdf:Description rdf:about="" rdf:ID="">

<rdfs:label></rdfs:label>

<rdfs:comment></rdfs:comment>

<oiled:creator></oiled:creator>

<oiled:creationDate></oiled:creationDate>

<rdf:type>

<daml:Class rdf:about=""/>

</rdf:type>

</rdf:Description>

Completing the ontology skeleton, and creating classes, properties, and individuals comprise the majority of ontology creation. The submenus that have not been outlined produce similar source code structures, though most are not as lengthy, as they merely add nuances to accent the ontology, rather than define it.

The “Help” menu performs the same functions described earlier for the application desktop, so its functions need not be repeated. Access to the help contents page is also available by clicking on the icon labeled with a question mark on the editor toolbar.

The ontology toolbar, located below the editing pane of the ontology desktop, has two functions. One of which is to provide the user of the location of his/her cursor, by giving the current line and column on which it rests. The second is to allow easy access to ontology syntax source code skeletons (the same ones presented in the syntax menu above). The toolbar icons shown from left to right are the ontology skeleton button, labeled “S,” the class button, marked “C,” the object property button, branded “P” with “OBJ” superimposed, the datatype property button, tagged “P” with a superimposed “DAT,” and the individual button, depicted with an “I.”

Syntax highlighting offers SWOG an important feature. It allows web authors to get visual feedback during the creation of ontologies. As the user types, keywords from semantic Web syntax are outlined in various and sundry colors. Because of this, the user can quickly spot typos that have been made during the editing process, when a misspelled primitive fails to become highlighted. Currently, the following color scheme is used to highlight primitives: classes and keywords are highlighted in purple, namespaces in red, properties and attributes in blue, strings in green, comments in orange, and all other textual information in black. This color scheme model is based on the default color scheme of jGRASP, a programming editor developed in the Auburn University Computer Science and Software Engineering Department by Dr. James Cross and Larry Barowski [18].

This chapter has outlined the focus of this paper, the SWOG editor. The reader has been given an in-depth look at the menu and toolbar options available in the system, as well as screen shots of the editor for illustration purposes. There are numerous advantages that this system has: It is written in Java, which makes it cross-platform compatible; it is small in size, able to fit on one floppy disk; it has a familiar text editor look and feel, which allows users already familiar with text editors to adapt quickly to this application; it has an elaborate help system, allowing users to find semantic Web information, and assistance with the program; it provides source code skeletons that save the typing needing to be done by the user; and it provides visual feedback in the form of syntax highlighting. Due to these characteristics, SWOG is highly suited for allowing web authors to create semantic Web ontologies.

4 CONCLUSION

The semantic Web is dependent upon the widespread adoption of user-created ontologies, or organized metadata that describes the data contained on a website. Furthermore, these ontologies must be written in globally standardized languages for maximum utility. Currently, the World Wide Web Consortium has suggested RDF, RDFS, and DAML+OIL, as these standardized ontology-representation languages.

As these ontologies are integrated into the mesh of Web pages that comprise the current WWW, the Web as a whole, can move forward and address more serious issues in the future. A future that offers very exciting possibilities such as the creation of search engines with a vast reduction on the number of false positives that support searches based on semantic structure, rather than mere keywords. Also available is the potential for semantic Web enabled devices that not only will be human-operable, but will also be able to interact with other devices, either locally, or globally through the Web. The semantic Web may even offer the possibility of secure fund exchange, such that agents can monitor our finances and even pay our bills without human-interaction. These far-fetched dreams, however, have a foundation in users being able to quickly and easily create semantic Web ontologies.

SWOG – Semantic Web Ontology Generator is a software system that has been specifically designed to enable users with programming experience to design, create, and

edit ontologies for use on the semantic Web. It aids users in four main ways.

First, It offers the familiar layout of a text editor with which the majority of computer users today are familiar. Second, it provides extensive help to users, giving them a foundation in the primitives necessary for creating ontologies written in RDF, RDFS, and DAML+OIL, as well as offering an overview of how to use the program. This is in contrast to most other ontology editors currently available, such as OilEd, which offer no help to users at all. Third, SWOG, offers syntax highlighting, which identifies classes, properties, keywords, attributes and namespaces that are available in RDF, RDFS, and DAML+OIL. And finally, it allows authors to easily construct ontologies using syntax source code skeletons that can be completed by the user. Also, unlike other editors available, SWOG offers a full range of ontology expression, by not limiting a user merely to a point-and-click interface that results in lack of expression power.

While SWOG has been designed to accommodate users that are familiar with programming languages and concepts, it also caters well to those with word processing skills. Users that are new to the semantic web can use the specialized help menus to find necessary information about semantic Web syntax, while those familiar with its syntax can find work saving code skeletons to facilitate data input. It is this author’s hope and intention that SWOG be both a useful and usable ontology editor for users of all types.

REFERENCES

[1]
Google. http://www.google.com

[2]
J. Deep, and P. Holfelder, Developing CGI Applications with Perl.

New York: Wiley Computer Publishing, 1996, pp.2-4.

[3]
J. Broekstra, et al., “Adding Formal Semantics to the Web: Building on Top of RDF Schema,” In Proc. SemWeb 2000, p. 1, September 2000.

[4]
Markup Languages and Ontologies. http://www.semanticweb.org/knowmarkup.html.

[5]
O. Lassila, and R. Swick, “Resource Description Framework
(RDF) Model and Syntax Specification,” February 1999, http://www.w3.org/TR/REC-rdf-syntax/.
[6]
S. Decker, et. al., “The Semantic Web: The Roles of XML and RDF,” IEEE Internet Computing, p. 5, September-October 2000.
[7]
RDFS. http://www.w3.org/2001/01/rdf-schema#.

[8]
U. Ogbuji, and R. Ouellet, “DAML Reference,” May 2002, http://www.xml.com/pub/a/2002/05/01/damlref.html.

[9]
J. Kunze, “Encoding Dublic Core Metadata in HTML,” December 1999, http://www.ietf.org/rfc/rfc2731.txt.
[10]

Dublin Core Element Set. http://dublincore.org/2001/08/14/dces#.

[11]

Tim Berners-Lee: The layered architecture of the semantic web.

http://lists.w3.org/Archives/Public/www-webont-wg/2002Jan/0030.html.

[12]
F. Hartmann, “Akademische OpenCulture oder globales WissensBusiness [Academic OpenCulture or Global Knowledge-Business],” May 2001, http://www.heise.de/tp/deutsch/inhalt/co/7593/1.html.

[13]
T. Berners-Lee, J. Hendler, and O. Lassila, “The Semantic Web,” May 2001, http://www.scientificamerican.com/2001/0501issue/
0501berners-lee.html.

[14]
R. S. Cost, et. al., “ITTALKS: A Case Study in the Semantic Web and DAML,” In Proc. of International Semantic Web Working Symposium (SWWS) 2001, July-August 2001.

[15]
C. Goad, “Describing computation within RDF,” In Proc. of International Semantic Web Working Symposium (SWWS) 2001, July-August 2001.

[16]
S. Bechhofer, et al., “OilEd: a Reason- able Ontology Editor for the Semantic Web.” Submitted to IJCAI '01, Seventeenth International Joint Conference on Artificial Intelligence, 2001. pp. 3, 7.

[17]
H. Kim, “Predicting How Ontologies for the Semantic Web Will Evolve,” Communications of the ACM, vol. 45, no. 2, p. 53, February 2002.

[18]
jGRASP. http://www.eng.auburn.edu/grasp/
APPENDIX

Source Code for SWOG Software Program

(N. B. comments removed due to space limitations)

SWOGSplashScreen.java

 import javax.swing.*;
 import javax.swing.border.*;
 import java.awt.*;
 import java.awt.event.*;

 public class SWOGSplashScreen extends JWindow
 {
 private int splashWidth;
 private int splashHeight;
 private int duration;

 public SWOGSplashScreen(String text, String iconPath, int time, Color bkgd, Color frgd)
 {
 ImageIcon icon = new ImageIcon(iconPath);
 Dimension dimension = Toolkit.getDefaultToolkit().getScreenSize();
 JPanel panel = new JPanel();

 JLabel iconLabel = new JLabel(icon, JLabel.CENTER);
 JLabel textLabel = new JLabel(text, JLabel.CENTER);
 textLabel.setFont(new Font("SanSerif", Font.BOLD, 12));
 textLabel.setOpaque(true);
 textLabel.setBackground(bkgd);
 textLabel.setForeground(frgd);

 Border border = BorderFactory.createLineBorder(frgd, 2);

 splashWidth = icon.getIconWidth();
 splashHeight = icon.getIconHeight();
 duration = time;

 panel.setLayout(new BorderLayout());
 ((JPanel) panel).setBorder(border);
 panel.add("North", iconLabel);
 panel.add("South", textLabel);
 setContentPane(panel);

 setLocation((dimension.width - splashWidth) / 2, (dimension.height - (splashHeight + 20)) / 2);
 setSize(splashWidth, splashHeight + 20);

 setVisible(true);

 try
 {
 Thread.sleep(duration);
 }
 catch (InterruptedException e)
 {
 }
 this.dispose();
 }
 }

SWOGUI.java

 import java.io.*;
 import javax.swing.*;
 import javax.swing.event.*;
 import java.awt.event.*;
 import java.awt.*;
 import java.util.ArrayList;
 import SWOGDesktop;
 import SWOGHelp;
 import SWOGSplashScreen;

 public class SWOGUI extends JFrame
 {
 private static final int NO_MASK = 0;
 private SWOGHelp helpBrowser;
 private JDesktopPane desktop;

 private JMenuItem fmSave;
 private JMenuItem fmClose;

 private JMenuItem wndRefresh;
 private JMenuItem wndCascade;

 private ArrayList desktops;

 public SWOGUI()
 {
 super("SWOG - Semantic Web Ontology Generator");

 ImageIcon icon = new ImageIcon("images/swogMainIcon.gif");
 setIconImage(icon.getImage());
 int inset = 50;
 Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
 setBounds(inset, inset, screenSize.width - inset * 2, screenSize.height - inset * 2);

 addWindowListener(
 new WindowAdapter()
 {
 public void windowActivated(WindowEvent e)
 {
 }

 public void windowClosed(WindowEvent e)
 {
 }

 public void windowClosing(WindowEvent e)
 {
 Exit();
 }

 public void windowIconified(WindowEvent e)
 {
 }

 public void windowDeiconified(WindowEvent e)
 {
 }

 public void windowDeactivated(WindowEvent e)
 {
 }

 public void windowOpened(WindowEvent e)
 {
 }
 });
 desktop = new JDesktopPane();
 setContentPane(desktop);
 JMenuBar menuBar = ConstructMenuBar();
 setJMenuBar(menuBar);
 desktop.putClientProperty("JDesktopPane.dragMode", "outline");

 helpBrowser = null;

 desktops = new ArrayList();
 }

 private JMenuBar ConstructMenuBar()
 {
 JMenuBar menuBar = new JMenuBar();

 JMenu fileMenu = ConstructFileMenu();
 JMenu windMenu = ConstructWindowMenu();
 JMenu setMenu = ConstructSettingsMenu();
 JMenu helpMenu = ConstructHelpMenu();

 menuBar.add(fileMenu);
 menuBar.add(windMenu);
 menuBar.add(setMenu);
 menuBar.add(helpMenu);

 return menuBar;
 }

 private JMenu ConstructFileMenu()
 {
 JMenu fileMenu = new JMenu("File");
 fileMenu.setMnemonic(KeyEvent.VK_F);

 JMenuItem fmNew = new JMenuItem("New Desktop");
 fmNew.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 New();
 }
 });
 JMenuItem fmOpen = new JMenuItem("Open Desktop");
 fmOpen.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Open();
 }
 });
 fmSave = new JMenuItem("Save All");
 fmSave.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 SaveAll();
 }
 });
 fmClose = new JMenuItem("Close All");
 fmClose.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 CloseAll();
 }
 });
 JMenuItem fmExit = new JMenuItem("Exit SWOG");
 fmExit.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Exit();
 }
 });
 fmNew.setMnemonic(KeyEvent.VK_N);
 fmOpen.setMnemonic(KeyEvent.VK_O);
 fmSave.setMnemonic(KeyEvent.VK_S);
 fmSave.setEnabled(false);
 fmClose.setMnemonic(KeyEvent.VK_C);
 fmClose.setEnabled(false);
 fmExit.setMnemonic(KeyEvent.VK_E);

 fileMenu.add(fmNew);
 fileMenu.add(fmOpen);
 fileMenu.addSeparator();
 fileMenu.add(fmSave);
 fileMenu.add(fmClose);
 fileMenu.addSeparator();
 fileMenu.add(fmExit);

 return fileMenu;
 }

 private JMenu ConstructWindowMenu()
 {
 JMenu windMenu = new JMenu("Windows");
 windMenu.setMnemonic(KeyEvent.VK_W);

 wndRefresh = new JMenuItem("Refresh");
 wndRefresh.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Refresh();
 }
 });
 wndCascade = new JMenuItem("Cascade Windows");
 wndCascade.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Cascade();
 }
 });
 wndRefresh.setMnemonic(KeyEvent.VK_R);
 wndCascade.setMnemonic(KeyEvent.VK_C);
 wndCascade.setEnabled(false);

 windMenu.add(wndRefresh);
 windMenu.add(wndCascade);

 return windMenu;
 }

 private JMenu ConstructSettingsMenu()
 {
 JMenu setMenu = new JMenu("Settings");
 setMenu.setMnemonic(KeyEvent.VK_S);

 JMenu LandFMenu = new JMenu("Look & Feel");
 LandFMenu.setMnemonic(KeyEvent.VK_L);

 ButtonGroup group = new ButtonGroup();
 JRadioButtonMenuItem rbMenuItem = new JRadioButtonMenuItem("Metal");
 rbMenuItem.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 try
 {
 UIManager.setLookAndFeel("javax.swing.plaf.metal.MetalLookAndFeel");
 SwingUtilities.updateComponentTreeUI(SWOGUI.this);
 }
 catch (Exception ex)
 {
 }
 }
 });
 rbMenuItem.setSelected(true);
 rbMenuItem.setMnemonic(KeyEvent.VK_M);
 group.add(rbMenuItem);
 LandFMenu.add(rbMenuItem);

 rbMenuItem = new JRadioButtonMenuItem("Motif");
 rbMenuItem.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 try
 {
 UIManager.setLookAndFeel("com.sun.java.swing.plaf.motif.MotifLookAndFeel");
 SwingUtilities.updateComponentTreeUI(SWOGUI.this);
 }
 catch (Exception ex)
 {
 }
 }
 });
 rbMenuItem.setMnemonic(KeyEvent.VK_O);
 group.add(rbMenuItem);
 LandFMenu.add(rbMenuItem);

 rbMenuItem = new JRadioButtonMenuItem("Windows");
 rbMenuItem.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 try
 {
 UIManager.setLookAndFeel("com.sun.java.swing.plaf.windows.WindowsLookAndFeel");
 SwingUtilities.updateComponentTreeUI(SWOGUI.this);
 }
 catch (Exception ex)
 {
 }
 }
 });
 rbMenuItem.setMnemonic(KeyEvent.VK_W);
 group.add(rbMenuItem);
 LandFMenu.add(rbMenuItem);

 setMenu.add(LandFMenu);

 return setMenu;
 }

 private JMenu ConstructHelpMenu()
 {
 JMenu helpMenu = new JMenu("Help");
 helpMenu.setMnemonic(KeyEvent.VK_H);

 JMenuItem hlpContents = new JMenuItem("Help Contents");
 hlpContents.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Contents();
 }
 });
 JMenuItem hlpSWOG = new JMenuItem("SWOG Help");
 hlpSWOG.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 SWOG();
 }
 });
 JMenuItem hlpSW = new JMenuItem("Semantic Web Help");
 hlpSW.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 SW();
 }
 });
 JMenuItem hlpLicense = new JMenuItem("License");
 hlpLicense.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 License();
 }
 });
 JMenuItem hlpAbout = new JMenuItem("About");
 hlpAbout.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 About();
 }
 });
 hlpContents.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_F1, NO_MASK));

 hlpContents.setMnemonic(KeyEvent.VK_H);
 hlpSWOG.setMnemonic(KeyEvent.VK_S);
 hlpSW.setMnemonic(KeyEvent.VK_W);
 hlpLicense.setMnemonic(KeyEvent.VK_L);
 hlpAbout.setMnemonic(KeyEvent.VK_A);

 helpMenu.add(hlpContents);
 helpMenu.add(hlpSWOG);
 helpMenu.add(hlpSW);
 helpMenu.addSeparator();
 helpMenu.add(hlpLicense);
 helpMenu.add(hlpAbout);

 return helpMenu;
 }

 private SWOGHelp createHelpWindow(String u)
 {
 if (helpBrowser == null)
 {
 helpBrowser = new SWOGHelp(u);
 helpBrowser.setVisible(true);
 helpBrowser.requestFocus();
 }
 else if (helpBrowser.getState() == Frame.ICONIFIED)
 {
 helpBrowser.setState(Frame.NORMAL);
 helpBrowser.requestFocus();
 }
 else
 {
 helpBrowser.setVisible(true);
 helpBrowser.requestFocus();
 }
 return helpBrowser;
 }

 public SWOGDesktop New()
 {
 final SWOGDesktop swogdesktop = new SWOGDesktop(helpBrowser, desktops, fmSave, fmClose, wndCascade);
 desktops.add(swogdesktop);
 ((SWOGDesktop) desktops.get(desktops.lastIndexOf(swogdesktop))).setVisible(true);
 desktop.add((SWOGDesktop) desktops.get(desktops.lastIndexOf(swogdesktop)));
 fmSave.setEnabled(true);
 fmClose.setEnabled(true);
 wndCascade.setEnabled(true);

 swogdesktop.addInternalFrameListener(
 new InternalFrameAdapter()
 {
 public void internalFrameActivated(InternalFrameEvent e)
 {
 }

 public void internalFrameClosed(InternalFrameEvent e)
 {
 }

 public void internalFrameClosing(InternalFrameEvent e)
 {
 swogdesktop.Close();
 }

 public void internalFrameDeactivated(InternalFrameEvent e)
 {
 }

 public void internalFrameDeiconified(InternalFrameEvent e)
 {
 }

 public void internalFrameIconified(InternalFrameEvent e)
 {
 }

 public void internalFrameOpened(InternalFrameEvent e)
 {
 }
 });
 try
 {
 swogdesktop.setSelected(true);
 }
 catch (java.beans.PropertyVetoException e)
 {
 }

 return swogdesktop;
 }

 public void Open()
 {
 JFileChooser fc = new JFileChooser();
 String[] damlStr = new String[] {"daml"};
 String[] xmlStr = new String[] {"xml"};
 fc.setMultiSelectionEnabled(false);
 fc.addChoosableFileFilter(new SWOGFileFilter(damlStr, "DAML (*.daml)"));
 fc.addChoosableFileFilter(new SWOGFileFilter(xmlStr, "XML (*.xml)"));
 int returnVal = fc.showOpenDialog(this);

 if (returnVal == JFileChooser.APPROVE_OPTION)
 {
 File file = fc.getSelectedFile();
 SWOGDesktop currentDesktop = New();
 currentDesktop.Open(file);
 }
 }

 public void SaveAll()
 {
 JInternalFrame[] openWindows = desktop.getAllFrames();
 for (int i = 0; i < openWindows.length; i++)
 {
 ((SWOGDesktop) openWindows[i]).Save();
 }
 }

 public void CloseAll()
 {
 JInternalFrame[] openWindows = desktop.getAllFrames();

 for (int i = 0; i < openWindows.length; i++)
 {
 if (((SWOGDesktop)openWindows[i]).isModified())
 {
 ((SWOGDesktop)openWindows[i]).checkSaveBeforeClose();
 }
 }
 desktops = null;
 desktops = new ArrayList();
 desktop.removeAll();
 desktop.updateUI();
 fmSave.setEnabled(false);
 fmClose.setEnabled(false);
 }

 public void Exit()
 {
 JInternalFrame[] openWindows = desktop.getAllFrames();

 for (int i = 0; i < openWindows.length; i++)
 {
 if (((SWOGDesktop)openWindows[i]).isModified())
 {
 ((SWOGDesktop)openWindows[i]).checkSaveBeforeClose();
 }
 }

 dispose();
 System.exit(0);
 }

 public void Refresh()
 {
 JInternalFrame[] openWindows = desktop.getAllFrames();

 desktop.updateUI();

 for (int i = 0; i < openWindows.length; i++)
 {
 openWindows[i].updateUI();
 }
 }

 public void Cascade()
 {
 int x = 0;
 int y = 0;
 JInternalFrame[] openWindows = desktop.getAllFrames();

 for (int i = 0; i < openWindows.length; i++)
 {
 openWindows[i].reshape(x, y, 660, 520);
 x += 30;
 y += 30;
 }
 }

 public void Contents()
 {
 helpBrowser = createHelpWindow("file:///" + System.getProperty("user.dir") + "\\help\\contents.html");
 }

 public void SWOG()
 {
 helpBrowser = createHelpWindow("file:///" + System.getProperty("user.dir") + "\\help\\contents.html#SWOG");
 }

 public void SW()
 {
 helpBrowser = createHelpWindow("file:///" + System.getProperty("user.dir") + "\\help\\contents.html#SW");
 }

 public void License()
 {
 helpBrowser = createHelpWindow("file:///" + System.getProperty("user.dir") + "\\help\\contents.html#License");
 }

 public void About()
 {
 helpBrowser = createHelpWindow("file:///" + System.getProperty("user.dir") + "\\help\\contents.html#About");
 }

 public static void main(String[] args)
 {
 String text = "Copyright (C) 2002 by Dackral Scott Phillips. All Rights Reserved.";
 String iconPath = "images/swogSplash.gif";
 SWOGSplashScreen intro = new SWOGSplashScreen(text, iconPath, 5000, Color.white, Color.black);

 SWOGUI swogui = new SWOGUI();
 swogui.setVisible(true);
 }
 }

SWOGDesktop.java

 import java.io.*;
 import javax.swing.*;
 import javax.swing.event.*;
 import javax.swing.text.*;
 import javax.swing.filechooser.*;
 import javax.swing.filechooser.FileFilter;
 import javax.swing.border.*;
 import javax.swing.plaf.*;
 import javax.swing.plaf.basic.*;
 import javax.swing.undo.*;
 import java.awt.*;
 import java.awt.event.*;
 import java.awt.print.*;
 import java.awt.image.*;
 import java.util.*;

 public class SWOGDesktop extends JInternalFrame
 {
 private static final int NO_MASK = 0;

 private String fileName;
 private String filePath;
 private File theFile;

 private boolean modified;

 private static int desktopCount = 1;

 private int desktopID;

 private SWOGHelp helpBrowser;

 private JPopupMenu popup;

 private JMenuItem fmSaveAll;
 private JMenuItem fmCloseAll;
 private JMenuItem wndCascade;

 private SWOGXMLDocument document;
 private JTextPane codeEditorPane;
 private JScrollPane scrollPane;
 private UndoManager undo = new UndoManager();
 private UndoAction edUndo;
 private RedoAction edRedo;
 private JLabel lineNoLbl;
 private JLabel colNoLbl;

 private ArrayList desktops;

 public SWOGDesktop(SWOGHelp help, ArrayList arraylist, JMenuItem fSaveAll, JMenuItem fCloseAll, JMenuItem wCascade)
 {
 super("[Untitled Ontology " + (desktopCount) + "]", true, true, true, true);

 modified = false;
 desktopID = desktopCount;
 desktopCount++;
 fmSaveAll = fSaveAll;
 fmCloseAll = fCloseAll;
 wndCascade = wCascade;
 int x = 30;
 int y = 30;
 helpBrowser = help;
 desktops = arraylist;

 setSize(660, 520);
 setLocation(x * (desktopCount - 2), y * (desktopCount - 2));
 ImageIcon logoIcon = new ImageIcon("images/swogInternalIcon.gif");
 setFrameIcon(logoIcon);

 document = new SWOGXMLDocument();

 codeEditorPane=
 new JTextPane(document)
 {
 // Hack from http://www.jalice.net/textfaq.htm that makes
 // JTextPane not Line Wrap

 public boolean getScrollableTracksViewportWidth()
 {
 return (getSize().width < getParent().getSize().width);
 }

 public void setSize(Dimension d)
 {
 if (d.width < getParent().getSize().width)
 {
 d.width = getParent().getSize().width;
 }
 super.setSize(d);
 }
 };
 codeEditorPane.setCaretPosition(0);
 document.addUndoableEditListener(new SWOGUndoableEditListener());
 codeEditorPane.addCaretListener(
 new CaretListener()
 {
 public void caretUpdate(CaretEvent e)
 {
 lineNoLbl.setText("Line:" + (codeEditorPane.getStyledDocument().getDefaultRootElement().getElementIndex(codeEditorPane.getCaretPosition()) + 1));
 colNoLbl.setText("Col:" + ((codeEditorPane.getCaretPosition() + 1 - (codeEditorPane.getStyledDocument().getParagraphElement(codeEditorPane.getCaretPosition()).getStartOffset()))));

 if (codeEditorPane.getText() == "")
 {
 modified = false;
 }
 else
 {
 modified = true;
 }
 }
 });
 scrollPane = new JScrollPane(codeEditorPane);

 popup = new JPopupMenu();
 JMenuItem menuItem = new JMenuItem("Cut");
 menuItem.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Cut();
 }
 });
 popup.add(menuItem);
 menuItem = new JMenuItem("Copy");
 menuItem.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Copy();
 }
 });
 popup.add(menuItem);
 menuItem = new JMenuItem("Paste");
 menuItem.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Paste();
 }
 });
 popup.add(menuItem);
 popup.addSeparator();
 menuItem = new JMenuItem("Select All");
 menuItem.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 SelectAll();
 }
 });
 popup.add(menuItem);
 popup.addSeparator();
 edUndo = new UndoAction();
 popup.add(edUndo);
 edRedo = new RedoAction();
 popup.add(edRedo);

 MouseListener popupListener = new PopupListener();
 codeEditorPane.addMouseListener(popupListener);
 scrollPane.addMouseListener(popupListener);

 JToolBar toolBar = ConstructToolBar();
 JToolBar ontToolBar = ConstructOntologyToolBar();
 JMenuBar menuBar = ConstructMenuBar();
 getContentPane().setLayout(new BorderLayout());
 setJMenuBar(menuBar);
 getContentPane().add(toolBar, BorderLayout.NORTH);
 getContentPane().add(scrollPane, BorderLayout.CENTER);
 getContentPane().add(ontToolBar, BorderLayout.SOUTH);
 }

 private JToolBar ConstructToolBar()
 {
 JToolBar toolbar = new JToolBar();
 JButton button = null;
 button = new JButton(new ImageIcon("images/New24.gif"));
 button.setToolTipText("Create New Ontology");
 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 New();
 }
 });
 toolbar.add(button);
 button = new JButton(new ImageIcon("images/Open24.gif"));
 button.setToolTipText("Open Existing Ontology");
 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Open();
 }
 });
 toolbar.add(button);
 button = new JButton(new ImageIcon("images/Save24.gif"));
 button.setToolTipText("Save Ontology");
 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Save();
 }
 });
 toolbar.add(button);
 button = new JButton(new ImageIcon("images/SaveAs24.gif"));
 button.setToolTipText("Save Ontology As...");
 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 SaveAs();
 }
 });
 toolbar.add(button);
 toolbar.addSeparator();
 button = new JButton(new ImageIcon("images/Cut24.gif"));
 button.setToolTipText("Cut Highlighted Text");
 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Cut();
 }
 });
 toolbar.add(button);
 button = new JButton(new ImageIcon("images/Copy24.gif"));
 button.setToolTipText("Copy Highlighted Text");
 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Copy();
 }
 });
 toolbar.add(button);
 button = new JButton(new ImageIcon("images/Paste24.gif"));
 button.setToolTipText("Paste Text");
 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Paste();
 }
 });
 toolbar.add(button);
 toolbar.addSeparator();
 button = new JButton(new ImageIcon("images/Undo24.gif"));
 button.setToolTipText("Undo");
 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Undo();
 }
 });
 toolbar.add(button);
 button = new JButton(new ImageIcon("images/Redo24.gif"));
 button.setToolTipText("Redo");
 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Redo();
 }
 });
 toolbar.add(button);
 toolbar.addSeparator();
 button = new JButton(new ImageIcon("images/Help24.gif"));
 button.setToolTipText("Help");
 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Contents();
 }
 });
 toolbar.add(button);

 return toolbar;
 }

 private JToolBar ConstructOntologyToolBar()
 {
 JToolBar toolbar = new JToolBar();

 lineNoLbl = new JLabel("Line:");
 colNoLbl = new JLabel("Col:");

 toolbar.add(lineNoLbl);
 toolbar.addSeparator();
 toolbar.add(colNoLbl);
 toolbar.addSeparator();
 JButton button = null;
 button = new JButton(new ImageIcon("images/skeletonIcon.gif"));
 button.setToolTipText("Create Ontology XML Skeleton");
 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Skeleton();
 }
 });
 toolbar.add(button);
 toolbar.addSeparator();
 button = new JButton(new ImageIcon("images/classIcon.gif"));
 button.setToolTipText("Create XML Class Skeleton");
 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Class();
 }
 });
 toolbar.add(button);
 button = new JButton(new ImageIcon("images/propertyObjIcon.gif"));
 button.setToolTipText("Create XML Object Property Skeleton");
 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 ObjProperty();
 }
 });
 toolbar.add(button);
 button = new JButton(new ImageIcon("images/propertyDatIcon.gif"));
 button.setToolTipText("Create XML Datatype Property Skeleton");
 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 DatProperty();
 }
 });
 toolbar.add(button);
 button = new JButton(new ImageIcon("images/individualIcon.gif"));
 button.setToolTipText("Create XML Individual Skeleton");
 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Individual();
 }
 });
 toolbar.add(button);

 return toolbar;
 }

 private JMenuBar ConstructMenuBar()
 {
 JMenuBar menuBar = new JMenuBar();

 JMenu fileMenu = ConstructFileMenu();
 JMenu editMenu = ConstructEditMenu();
 JMenu syntaxMenu = ConstructSyntaxMenu();
 JMenu helpMenu = ConstructHelpMenu();

 menuBar.add(fileMenu);
 menuBar.add(editMenu);
 menuBar.add(syntaxMenu);
 menuBar.add(helpMenu);

 return menuBar;
 }

 private JMenu ConstructFileMenu()
 {
 JMenu fileMenu = new JMenu("File");
 fileMenu.setMnemonic(KeyEvent.VK_F);

 JMenuItem fmNew = new JMenuItem("Clear");
 fmNew.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 New();
 }
 });
 JMenuItem fmOpen = new JMenuItem("Open");
 fmOpen.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Open();
 }
 });
 JMenuItem fmSave = new JMenuItem("Save");
 fmSave.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Save();
 }
 });
 JMenuItem fmSaveAs = new JMenuItem("Save As...");
 fmSaveAs.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 SaveAs();
 }
 });
 JMenuItem fmClose = new JMenuItem("Close");
 fmClose.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Close();
 }
 });
 fmNew.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_L, KeyEvent.CTRL_MASK));
 fmOpen.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_O, KeyEvent.CTRL_MASK));
 fmSave.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_S, KeyEvent.CTRL_MASK));
 fmSaveAs.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_A, KeyEvent.CTRL_MASK));
 fmClose.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_Q, KeyEvent.CTRL_MASK));

 fmNew.setMnemonic(KeyEvent.VK_L);
 fmOpen.setMnemonic(KeyEvent.VK_O);
 fmSave.setMnemonic(KeyEvent.VK_S);
 fmSaveAs.setMnemonic(KeyEvent.VK_A);
 fmClose.setMnemonic(KeyEvent.VK_C);

 fileMenu.add(fmNew);
 fileMenu.add(fmOpen);
 fileMenu.addSeparator();
 fileMenu.add(fmSave);
 fileMenu.add(fmSaveAs);
 fileMenu.addSeparator();
 fileMenu.add(fmClose);

 return fileMenu;
 }

 private JMenu ConstructEditMenu()
 {
 JMenu editMenu = new JMenu("Edit");
 editMenu.setMnemonic(KeyEvent.VK_E);

 edUndo = new UndoAction();
 edRedo = new RedoAction();
 JMenuItem edCut = new JMenuItem("Cut");
 edCut.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Cut();
 }
 });
 JMenuItem edCopy = new JMenuItem("Copy");
 edCopy.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Copy();
 }
 });
 JMenuItem edPaste = new JMenuItem("Paste");
 edPaste.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Paste();
 }
 });
 JMenuItem edSelect = new JMenuItem("Select All");
 edSelect.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 SelectAll();
 }
 });
 edCut.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_X, KeyEvent.CTRL_MASK));
 edCopy.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_C, KeyEvent.CTRL_MASK));
 edPaste.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_V, KeyEvent.CTRL_MASK));
 edSelect.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_L, KeyEvent.CTRL_MASK));

 edUndo.setEnabled(false);
 edRedo.setEnabled(false);
 edCut.setMnemonic(KeyEvent.VK_U);
 edCopy.setMnemonic(KeyEvent.VK_C);
 edPaste.setMnemonic(KeyEvent.VK_P);
 edSelect.setMnemonic(KeyEvent.VK_S);

 editMenu.add(edUndo);
 editMenu.add(edRedo);
 editMenu.addSeparator();
 editMenu.add(edCut);
 editMenu.add(edCopy);
 editMenu.add(edPaste);
 editMenu.addSeparator();
 editMenu.add(edSelect);

 return editMenu;
 }

 private JMenu ConstructSyntaxMenu()
 {
 JMenu syntaxMenu = new JMenu("Syntax");
 syntaxMenu.setMnemonic(KeyEvent.VK_S);

 JMenu RDFMenu = new JMenu("RDF");
 RDFMenu.setMnemonic(KeyEvent.VK_R);

 JMenu RDFSMenu = new JMenu("RDFS");
 RDFSMenu.setMnemonic(KeyEvent.VK_F);

 JMenu DAMLMenu = new JMenu("DAML + OIL");
 DAMLMenu.setMnemonic(KeyEvent.VK_D);

 JMenu classMenu = new JMenu("Class Menu");
 classMenu.setMnemonic(KeyEvent.VK_C);
 DAMLMenu.add(classMenu);

 JMenu indMenu = new JMenu("Individual Menu");
 indMenu.setMnemonic(KeyEvent.VK_I);
 DAMLMenu.add(indMenu);

 JMenu listMenu = new JMenu("List Menu");
 listMenu.setMnemonic(KeyEvent.VK_L);
 DAMLMenu.add(listMenu);

 JMenu ontMenu = new JMenu("Ontology Menu");
 ontMenu.setMnemonic(KeyEvent.VK_O);
 DAMLMenu.add(ontMenu);

 JMenu propMenu = new JMenu("Property Menu");
 propMenu.setMnemonic(KeyEvent.VK_P);
 DAMLMenu.add(propMenu);

 JMenu rstrctMenu = new JMenu("Restriction Menu");
 rstrctMenu.setMnemonic(KeyEvent.VK_R);
 DAMLMenu.add(rstrctMenu);

 JMenuItem rdfAlt = new JMenuItem("Alternate");
 rdfAlt.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "__<rdf:Alt>\n\n";
 skeleton = skeleton + "__</rdf:Alt>\n";
 codeEditorPane.replaceSelection(skeleton);_
 }
 });
 rdfAlt.setMnemonic(KeyEvent.VK_A);
 RDFMenu.add(rdfAlt);

 JMenuItem rdfBag = new JMenuItem("Bag");
 rdfBag.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "__<rdf:Bag bagID=\"\">\n\n";
 skeleton = skeleton + "__</rdf:Bag>\n";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rdfBag.setMnemonic(KeyEvent.VK_B);
 RDFMenu.add(rdfBag);

 JMenuItem rdfSeq = new JMenuItem("Sequence");
 rdfSeq.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "__<rdf:Seq>\n\n";
 skeleton = skeleton + "__</rdf:Seq>\n";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rdfSeq.setMnemonic(KeyEvent.VK_S);
 RDFMenu.add(rdfSeq);

 JMenuItem rdfLI = new JMenuItem("list item");
 rdfLI.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<rdf:li></rdf:li>\n";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rdfLI.setMnemonic(KeyEvent.VK_I);
 RDFMenu.add(rdfLI);
 RDFMenu.addSeparator();

 JMenuItem rdfAboutEach = new JMenuItem("about each");
 rdfAboutEach.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "aboutEach=\"\"";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rdfAboutEach.setMnemonic(KeyEvent.VK_E);
 RDFMenu.add(rdfAboutEach);

 JMenuItem rdfAboutEachPrefix = new JMenuItem("about each prefix");
 rdfAboutEachPrefix.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "aboutEachPrefix=\"\"";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rdfAboutEachPrefix.setMnemonic(KeyEvent.VK_P);
 RDFMenu.add(rdfAboutEachPrefix);
 RDFMenu.addSeparator();

 JMenuItem rdfParseLiteral = new JMenuItem("literal parse type");
 rdfParseLiteral.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "parseType=\"Literal\"";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rdfParseLiteral.setMnemonic(KeyEvent.VK_L);
 RDFMenu.add(rdfParseLiteral);

 JMenuItem rdfParseResource = new JMenuItem("resource parse type");
 rdfParseResource.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "parseType=\"Resource\"";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rdfParseResource.setMnemonic(KeyEvent.VK_R);
 RDFMenu.add(rdfParseResource);
 RDFMenu.addSeparator();

 JMenuItem rdfType = new JMenuItem("type");
 rdfType.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "__<rdf:type rdf:resource=\"\"></rdf:type>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rdfType.setMnemonic(KeyEvent.VK_T);
 RDFMenu.add(rdfType);

 JMenuItem rdfValue = new JMenuItem("value");
 rdfValue.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "__<rdf:value></rdf:value>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rdfValue.setMnemonic(KeyEvent.VK_V);
 RDFMenu.add(rdfValue);

 JMenuItem rdfsCont = new JMenuItem("Container");
 rdfsCont.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "rdf:resource=\"rdfs:Container\"";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rdfsCont.setMnemonic(KeyEvent.VK_C);
 RDFSMenu.add(rdfsCont);

 JMenuItem rdfsCMP = new JMenuItem("Container Membership Property");
 rdfsCMP.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "rdf:resource=\"rdfs:ContainerMembershipProperty\"";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rdfsCMP.setMnemonic(KeyEvent.VK_M);
 RDFSMenu.add(rdfsCMP);

 JMenuItem rdfsLit = new JMenuItem("Literal");
 rdfsLit.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "rdf:resource=\"rdfs:Literal\"";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rdfsLit.setMnemonic(KeyEvent.VK_L);
 RDFSMenu.add(rdfsLit);

 JMenuItem rdfsResource = new JMenuItem("Resource");
 rdfsResource.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "rdf:resource=\"rdfs:Resource\"";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rdfsResource.setMnemonic(KeyEvent.VK_R);
 RDFSMenu.add(rdfsResource);
 RDFSMenu.addSeparator();

 JMenuItem rdfsCP = new JMenuItem("Constraint Property");
 rdfsCP.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "__<rdfs:ConstraintProperty rdf:ID=\"\">\n\n";
 skeleton = skeleton + "__</rdfs:ConstraintProperty>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rdfsCP.setMnemonic(KeyEvent.VK_P);
 RDFSMenu.add(rdfsCP);

 JMenuItem rdfsDomain = new JMenuItem("domain");
 rdfsDomain.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<rdfs:domain rdf:resource=\"\">\n\n";
 skeleton = skeleton + "___</rdfs:domain>\n";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rdfsDomain.setMnemonic(KeyEvent.VK_D);
 RDFSMenu.add(rdfsDomain);

 JMenuItem rdfsRange = new JMenuItem("range");
 rdfsRange.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<rdfs:range rdf:resource=\"\">\n\n";
 skeleton = skeleton + "___</rdfs:range>\n";
 codeEditorPane.replaceSelection(skeleton);
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rdfsRange.setMnemonic(KeyEvent.VK_G);
 RDFSMenu.add(rdfsRange);
 RDFSMenu.addSeparator();

 JMenuItem rdfsDefined = new JMenuItem("is defined by");
 rdfsDefined.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<rdfs:isDefinedBy rdf:resource=\"\"/>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rdfsDefined.setMnemonic(KeyEvent.VK_I);
 RDFSMenu.add(rdfsDefined);

 JMenuItem rdfsAlso = new JMenuItem("see also");
 rdfsAlso.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<rdfs:seeAlso rdf:resource=\"\"/>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rdfsAlso.setMnemonic(KeyEvent.VK_S);
 RDFSMenu.add(rdfsAlso);
 RDFSMenu.addSeparator();

 JMenuItem subClass = new JMenuItem("subclass of");
 subClass.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<rdfs:subClassOf>\n";
 skeleton = skeleton + "____<daml:Class rdf:about=\"\"/>\n";
 skeleton = skeleton + "___</rdfs:subClassOf>\n";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 subClass.setMnemonic(KeyEvent.VK_O);
 RDFSMenu.add(subClass);

 JMenuItem subProp = new JMenuItem("subproperty of");
 subProp.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<rdfs:subPropertyOf rdf:resource=\"\"/>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 subProp.setMnemonic(KeyEvent.VK_Y);
 RDFSMenu.add(subProp);

 JMenuItem DataType = new JMenuItem("Datatype");
 DataType.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "daml:Datatype";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 DataType.setMnemonic(KeyEvent.VK_D);
 classMenu.add(DataType);

 JMenuItem Nothing = new JMenuItem("Nothing");
 Nothing.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "daml:Nothing";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 Nothing.setMnemonic(KeyEvent.VK_N);
 classMenu.add(Nothing);

 JMenuItem Thing = new JMenuItem("Thing");
 Thing.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<daml:Thing rdf:ID=\"\">\n\n";
 skeleton = skeleton + "___</daml:Thing>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 Thing.setMnemonic(KeyEvent.VK_T);
 classMenu.add(Thing);
 classMenu.addSeparator();

 JMenuItem compOf = new JMenuItem("complement of");
 compOf.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<daml:complementOf rdf:resource=\"\"/>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 compOf.setMnemonic(KeyEvent.VK_C);
 classMenu.add(compOf);

 JMenuItem disjoint = new JMenuItem("disjoint with");
 disjoint.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<daml:disjointWith rdf:resource=\"\"/>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 disjoint.setMnemonic(KeyEvent.VK_J);
 classMenu.add(disjoint);

 JMenuItem equiv = new JMenuItem("equivalent to");
 equiv.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<daml:equivalentTo rdf:resource=\"\"/>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 equiv.setMnemonic(KeyEvent.VK_E);
 classMenu.add(equiv);

 JMenuItem sameClass = new JMenuItem("same class as");
 sameClass.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<daml:sameClassAs rdf:resource=\"\"/>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 sameClass.setMnemonic(KeyEvent.VK_S);
 classMenu.add(sameClass);
 classMenu.addSeparator();

 JMenuItem disunionOf = new JMenuItem("disjoint union of");
 disunionOf.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<daml:disjointUnionOf rdf:parseType=\"daml:collection\">\n";
 skeleton = skeleton + "____<daml:Class rdf:about=\"\"/>\n";
 skeleton = skeleton + "____<daml:Class rdf:about=\"\"/>\n";
 skeleton = skeleton + "___</daml:disjointUnionOf>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 disunionOf.setMnemonic(KeyEvent.VK_O);
 classMenu.add(disunionOf);

 JMenuItem intOf = new JMenuItem("intersection of");
 intOf.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<daml:intersectionOf rdf:parseType=\"daml:collection\">\n";
 skeleton = skeleton + "____<daml:Class rdf:about=\"\"/>\n";
 skeleton = skeleton + "____<daml:Class rdf:about=\"\"/>\n";
 skeleton = skeleton + "___</daml:intersectionOf>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 intOf.setMnemonic(KeyEvent.VK_I);
 classMenu.add(intOf);

 JMenuItem unionOf = new JMenuItem("union of");
 unionOf.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<daml:unionOf rdf:parseType=\"daml:collection\">\n";
 skeleton = skeleton + "____<daml:Class rdf:about=\"\"/>\n";
 skeleton = skeleton + "____<daml:Class rdf:about=\"\"/>\n";
 skeleton = skeleton + "___</daml:unionOf>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 unionOf.setMnemonic(KeyEvent.VK_U);
 classMenu.add(unionOf);

 JMenuItem diffInd = new JMenuItem("different individual from");
 diffInd.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<daml:differentIndividualFrom rdf:resource=\"\"/>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 diffInd.setMnemonic(KeyEvent.VK_D);
 indMenu.add(diffInd);

 JMenuItem sameInd = new JMenuItem("same individual as");
 sameInd.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<daml:sameIndividualAs rdf:resource=\"\"/>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 sameInd.setMnemonic(KeyEvent.VK_S);
 indMenu.add(sameInd);

 JMenuItem List = new JMenuItem("List");
 List.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<daml:List>\n\n";
 skeleton = skeleton + "___</daml:List>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 List.setMnemonic(KeyEvent.VK_L);
 listMenu.add(List);
 listMenu.addSeparator();

 JMenuItem nilList = new JMenuItem("nil");
 nilList.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "_____<daml:nil/>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 nilList.setMnemonic(KeyEvent.VK_N);
 listMenu.add(nilList);
 listMenu.addSeparator();

 JMenuItem first = new JMenuItem("first");
 first.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "____<daml:first>\n\n";
 skeleton = skeleton + "____</daml:first>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 first.setMnemonic(KeyEvent.VK_F);
 listMenu.add(first);

 JMenuItem rest = new JMenuItem("rest");
 rest.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "____<daml:rest>\n\n";
 skeleton = skeleton + "____</daml:rest>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rest.setMnemonic(KeyEvent.VK_R);
 listMenu.add(rest);
 listMenu.addSeparator();

 JMenuItem item = new JMenuItem("item");
 item.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "_____<daml:item></daml:item>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 item.setMnemonic(KeyEvent.VK_I);
 listMenu.add(item);
 listMenu.addSeparator();

 JMenuItem oneOf = new JMenuItem("one of");
 oneOf.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<daml:oneOf rdf:parseType=\"daml:collection\">\n";
 skeleton = skeleton + "____< rdf:ID=\"\"/>\n";
 skeleton = skeleton + "____< rdf:ID=\"\"/>\n";
 skeleton = skeleton + "___</daml:oneOf>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 oneOf.setMnemonic(KeyEvent.VK_O);
 listMenu.add(oneOf);

 JMenuItem ontImport = new JMenuItem("imports");
 ontImport.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<daml:imports rdf:resource=\"\"/>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 ontImport.setMnemonic(KeyEvent.VK_I);
 ontMenu.add(ontImport);

 JMenuItem transProp = new JMenuItem("Transitive");
 transProp.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "__<daml:TransitiveProperty rdf:ID=\"\">\n";
 skeleton = skeleton + "___<rdfs:label></rdfs:label>\n";
 skeleton = skeleton + "___<rdfs:comment></rdfs:comment>\n";
 skeleton = skeleton + "__</daml:TransitiveProperty>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 transProp.setMnemonic(KeyEvent.VK_T);
 propMenu.add(transProp);

 JMenuItem unamProp = new JMenuItem("Unambiguous");
 unamProp.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "__<daml:UnambiguousProperty rdf:ID=\"\">\n";
 skeleton = skeleton + "___<rdfs:label></rdfs:label>\n";
 skeleton = skeleton + "___<rdfs:comment></rdfs:comment>\n";
 skeleton = skeleton + "__</daml:UnambiguousProperty>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 unamProp.setMnemonic(KeyEvent.VK_A);
 propMenu.add(unamProp);

 JMenuItem unqProp = new JMenuItem("Unique");
 unqProp.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "__<daml:UniqueProperty rdf:ID=\"\">\n";
 skeleton = skeleton + "___<rdfs:label></rdfs:label>\n";
 skeleton = skeleton + "___<rdfs:comment></rdfs:comment>\n";
 skeleton = skeleton + "__</daml:UniqueProperty>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 unqProp.setMnemonic(KeyEvent.VK_U);
 propMenu.add(unqProp);
 propMenu.addSeparator();

 JMenuItem invProp = new JMenuItem("inverse of");
 invProp.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<daml:inverseOf rdf:resource=\"\"/>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 invProp.setMnemonic(KeyEvent.VK_I);
 propMenu.add(invProp);

 JMenuItem sameProp = new JMenuItem("same property as");
 sameProp.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<daml:samePropertyAs rdf:resource=\"\"/>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 sameProp.setMnemonic(KeyEvent.VK_S);
 propMenu.add(sameProp);

 JMenuItem rstrct = new JMenuItem("Restriction");
 rstrct.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "___<daml:Restriction>\n\n";
 skeleton = skeleton + "___</daml:Restriction>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 rstrct.setMnemonic(KeyEvent.VK_R);
 rstrctMenu.add(rstrct);
 rstrctMenu.addSeparator();

 JMenuItem card = new JMenuItem("cardinality");
 card.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "daml:cardinality=\"\"";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 card.setMnemonic(KeyEvent.VK_C);
 rstrctMenu.add(card);

 JMenuItem cardq = new JMenuItem("cardinality q");
 cardq.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "daml:cardinalityQ=\"\"";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 cardq.setMnemonic(KeyEvent.VK_A);
 rstrctMenu.add(cardq);
 rstrctMenu.addSeparator();

 JMenuItem hasClass = new JMenuItem("has class");
 hasClass.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "____<daml:hasClass rdf:resource=\"\"/>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 hasClass.setMnemonic(KeyEvent.VK_H);
 rstrctMenu.add(hasClass);

 JMenuItem hasClassQ = new JMenuItem("has class q");
 hasClassQ.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "____<daml:hasClassQ rdf:resource=\"\"/>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 hasClassQ.setMnemonic(KeyEvent.VK_S);
 rstrctMenu.add(hasClassQ);

 JMenuItem hasVal = new JMenuItem("has value");
 hasVal.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "____<daml:hasValue rdf:resource=\"\"/>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 hasVal.setMnemonic(KeyEvent.VK_V);
 rstrctMenu.add(hasVal);
 rstrctMenu.addSeparator();

 JMenuItem maxCard = new JMenuItem("max cardinality");
 maxCard.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "____<daml:maxCardinality></daml:maxCardinality>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 maxCard.setMnemonic(KeyEvent.VK_X);
 rstrctMenu.add(maxCard);

 JMenuItem maxCardQ = new JMenuItem("max cardinality q");
 maxCardQ.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "daml:maxCardinalityQ=\"\"";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 maxCardQ.setMnemonic(KeyEvent.VK_D);
 rstrctMenu.add(maxCardQ);

 JMenuItem minCard = new JMenuItem("min cardinality");
 minCard.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "____<daml:minCardinality></daml:minCardinality>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 minCard.setMnemonic(KeyEvent.VK_N);
 rstrctMenu.add(minCard);

 JMenuItem minCardQ = new JMenuItem("min cardinality q");
 minCardQ.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "daml:minCardinalityQ=\"\"";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 minCardQ.setMnemonic(KeyEvent.VK_M);
 rstrctMenu.add(minCardQ);
 rstrctMenu.addSeparator();

 JMenuItem onProp = new JMenuItem("on property");
 onProp.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "____<daml:onProperty rdf:resource=\"\"/>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 onProp.setMnemonic(KeyEvent.VK_O);
 rstrctMenu.add(onProp);

 JMenuItem toClass = new JMenuItem("to class");
 toClass.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 String skeleton = "____<daml:toClass rdf:resource=\"\"/>";
 codeEditorPane.replaceSelection(skeleton);
 }
 });
 toClass.setMnemonic(KeyEvent.VK_T);
 rstrctMenu.add(toClass);

 syntaxMenu.add(RDFMenu);
 syntaxMenu.add(RDFSMenu);
 syntaxMenu.add(DAMLMenu);
 syntaxMenu.addSeparator();

 JMenuItem synSkeleton = new JMenuItem("Ontology Skeleton");
 synSkeleton.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Skeleton();
 }
 });
 synSkeleton.setMnemonic(KeyEvent.VK_S);
 syntaxMenu.add(synSkeleton);

 JMenuItem synClass = new JMenuItem("Class Skeleton");
 synClass.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Class();
 }
 });
 synClass.setMnemonic(KeyEvent.VK_C);
 syntaxMenu.add(synClass);

 JMenuItem synOT = new JMenuItem("Object Property Skeleton");
 synOT.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 ObjProperty();
 }
 });
 synOT.setMnemonic(KeyEvent.VK_O);
 syntaxMenu.add(synOT);

 JMenuItem synDT = new JMenuItem("Datatype Property Skeleton");
 synDT.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 DatProperty();
 }
 });
 synDT.setMnemonic(KeyEvent.VK_T);
 syntaxMenu.add(synDT);

 JMenuItem synInd = new JMenuItem("Individual Skeleton");
 synInd.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Individual();
 }
 });
 synInd.setMnemonic(KeyEvent.VK_I);
 syntaxMenu.add(synInd);

 return syntaxMenu;
 }

 private JMenu ConstructHelpMenu()
 {
 JMenu helpMenu = new JMenu("Help");
 helpMenu.setMnemonic(KeyEvent.VK_H);

 JMenuItem hlpContents = new JMenuItem("Help Contents");
 hlpContents.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Contents();
 }
 });
 JMenuItem hlpSWOG = new JMenuItem("SWOG Help");
 hlpSWOG.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 SWOG();
 }
 });
 JMenuItem hlpSW = new JMenuItem("Semantic Web Help");
 hlpSW.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 SW();
 }
 });
 JMenuItem hlpLicense = new JMenuItem("License");
 hlpLicense.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 License();
 }
 });
 JMenuItem hlpAbout = new JMenuItem("About");
 hlpAbout.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 About();
 }
 });
 hlpContents.setAccelerator(KeyStroke.getKeyStroke(KeyEvent.VK_F1, NO_MASK));

 hlpContents.setMnemonic(KeyEvent.VK_H);
 hlpSWOG.setMnemonic(KeyEvent.VK_S);
 hlpSW.setMnemonic(KeyEvent.VK_W);
 hlpLicense.setMnemonic(KeyEvent.VK_L);
 hlpAbout.setMnemonic(KeyEvent.VK_A);

 helpMenu.add(hlpContents);
 helpMenu.add(hlpSWOG);
 helpMenu.add(hlpSW);
 helpMenu.addSeparator();
 helpMenu.add(hlpLicense);
 helpMenu.add(hlpAbout);

 return helpMenu;
 }

 private SWOGHelp createHelpWindow(String u)
 {
 if (helpBrowser == null)
 {
 helpBrowser = new SWOGHelp(u);
 helpBrowser.setVisible(true);
 helpBrowser.requestFocus();
 }
 else if (helpBrowser.getState() == Frame.ICONIFIED)
 {
 helpBrowser.setState(Frame.NORMAL);
 }
 else
 {
 helpBrowser.setVisible(true);
 helpBrowser.requestFocus();
 }
 return helpBrowser;
 }

 public boolean isModified()
 {
 return modified;
 }

 private void New()
 {
 if (isModified())
 {
 switch(showNotSavedDialog())
 {
 case JOptionPane.YES_OPTION:
 {
 Save();
 }
 case JOptionPane.NO_OPTION:
 {
 codeEditorPane.setText("");
 modified = false;
 fileName = null;
 filePath = null;
 theFile = null;
 this.setTitle("[Untitled Ontology " + (desktopID) + "]");
 break;
 }

 case JOptionPane.CANCEL_OPTION:
 {
 break;
 }
 }
 }
 else
 {
 codeEditorPane.setText("");
 modified = false;
 fileName = null;
 filePath = null;
 theFile = null;
 this.setTitle("[Untitled Ontology " + (desktopID) + "]");
 }
 }

 public void Open()
 {
 if(!isModified())
 {
 codeEditorPane.setText("");

 JFileChooser fc = new JFileChooser();
 String[] damlStr = new String[] {"daml"};
 String[] xmlStr = new String[] {"xml"};
 fc.setMultiSelectionEnabled(false);
 fc.addChoosableFileFilter(new SWOGFileFilter(damlStr, "DAML (*.daml)"));
 fc.addChoosableFileFilter(new SWOGFileFilter(xmlStr, "XML (*.xml)"));
 int returnVal = fc.showOpenDialog(this);

 if (returnVal == JFileChooser.APPROVE_OPTION)
 {
 File file = fc.getSelectedFile();

 JTextPane tempPane = new JTextPane();
 EditorKit editorKit = new StyledEditorKit();
 tempPane.setEditorKit(editorKit);
 try
 {
 editorKit.read(new FileInputStream(file), tempPane.getStyledDocument(),0);
 }
 catch (Exception e)
 {
 JOptionPane.showMessageDialog(SWOGDesktop.this, "There Was an Error Trying To Read the File As Plain Text.\n" + e, "I/O Error", JOptionPane.ERROR_MESSAGE);
 }

 codeEditorPane.selectAll();
 codeEditorPane.replaceSelection(tempPane.getText());

 fileName = file.getName();
 filePath = file.getPath();
 theFile = file;
 this.setTitle(fileName);
 }
 }
 else
 {
 switch(showNotSavedDialog())
 {
 case JOptionPane.YES_OPTION:
 {
 Save();
 Open();
 break;
 }
 case JOptionPane.NO_OPTION:
 {
 modified = false;
 Open();
 }
 break;
 case JOptionPane.CANCEL_OPTION:
 {
 break;
 }
 }
 }
 }

 public void Open(File file)
 {
 JTextPane tempPane = new JTextPane();
 EditorKit editorKit = new StyledEditorKit();
 tempPane.setEditorKit(editorKit);
 try
 {
 editorKit.read(new FileInputStream(file), tempPane.getStyledDocument(),0);
 }
 catch (Exception e)
 {
 JOptionPane.showMessageDialog(SWOGDesktop.this, "There Was an Error Trying To Read the File As Plain Text.\n" + e, "I/O Error", JOptionPane.ERROR_MESSAGE);
 }

 codeEditorPane.selectAll();
 codeEditorPane.replaceSelection(tempPane.getText());

 fileName = file.getName();
 filePath = file.getPath();
 theFile = file;
 this.setTitle(fileName);
 }

 public void Save()
 {
 if (fileName == null)
 {
 SaveAs();
 }
 else if (isModified())
 {
 try
 {
 BufferedWriter writer = new BufferedWriter(new FileWriter(theFile));

 writer.write(codeEditorPane.getText());
 writer.flush();
 writer.close();
 }
 catch (FileNotFoundException fnfe)
 {
 JOptionPane.showMessageDialog(SWOGDesktop.this, "The file could not be saved.\n" + fnfe, "File Not Found Error", JOptionPane.ERROR_MESSAGE);
 }
 catch (IOException ioe)
 {
 JOptionPane.showMessageDialog(SWOGDesktop.this, "An I/O Error has occured.\n" + ioe, "I/O Error", JOptionPane.ERROR_MESSAGE);
 }
 modified = false;
 }
 }

 private void SaveAs()
 {
 final JFileChooser fc = new JFileChooser();
 String[] damlStr = new String[] {"daml"};
 String[] xmlStr = new String[] {"xml"};
 fc.setMultiSelectionEnabled(false);
 fc.addChoosableFileFilter(new SWOGFileFilter(damlStr, "DAML (*.daml)"));
 fc.addChoosableFileFilter(new SWOGFileFilter(xmlStr, "XML (*.xml)"));
 int returnVal = fc.showSaveDialog(this);

 if (returnVal == JFileChooser.APPROVE_OPTION)
 {
 File file = fc.getSelectedFile();

 fileName = file.getName();
 filePath = file.getPath();
 theFile = file;
 this.setTitle(fileName);
 try
 {
 BufferedWriter writer = new BufferedWriter(new FileWriter(theFile));

 writer.write(codeEditorPane.getText());
 writer.flush();
 writer.close();
 }
 catch (FileNotFoundException fnfe)
 {
 JOptionPane.showMessageDialog(SWOGDesktop.this, "There Was an Error Trying To Save the File.\n" + fnfe, "File Write Error", JOptionPane.ERROR_MESSAGE);
 }
 catch (IOException ioe)
 {
 JOptionPane.showMessageDialog(SWOGDesktop.this, "There Was an Error Trying To Save the File.\n" + ioe, "I/O Error", JOptionPane.ERROR_MESSAGE);
 }
 modified = false;
 }
 }

 public void Close()
 {
 if (isModified())
 {
 switch(showNotSavedDialog2())
 {
 case JOptionPane.YES_OPTION:
 {
 Save();
 break;
 }
 case JOptionPane.NO_OPTION:
 {
 break;
 }

 }
 }
 desktops.remove(desktops.lastIndexOf(SWOGDesktop.this));
 if (desktops.size() == 0)
 {
 fmSaveAll.setEnabled(false);
 fmCloseAll.setEnabled(false);
 wndCascade.setEnabled(false);
 }
 dispose();
 }

 private void Undo()
 {
 try
 {
 undo.undo();
 }
 catch (CannotUndoException cue)
 {
 JOptionPane.showMessageDialog(SWOGDesktop.this, "Unable to Undo.\n" + cue, "Undo Error", JOptionPane.ERROR_MESSAGE);
 }
 updateUndo();
 }

 private void Redo()
 {
 try
 {
 undo.redo();
 }
 catch (CannotUndoException cue)
 {
 JOptionPane.showMessageDialog(SWOGDesktop.this, "Unable to Redo.\n" + cue, "Redo Error", JOptionPane.ERROR_MESSAGE);
 }
 updateUndo();
 }

 private void Cut()
 {
 codeEditorPane.cut();
 }

 private void Copy()
 {
 codeEditorPane.copy();
 }

 private void Paste()
 {
 codeEditorPane.paste();
 }

 private void SelectAll()
 {
 codeEditorPane.selectAll();
 }

 private void Contents()
 {
 helpBrowser = createHelpWindow("file:///" + System.getProperty("user.dir") + "\\help\\contents.html");
 }

 private void SWOG()
 {
 helpBrowser = createHelpWindow("file:///" + System.getProperty("user.dir") + "\\help\\contents.html#SWOG");
 }

 private void SW()
 {
 helpBrowser = createHelpWindow("file:///" + System.getProperty("user.dir") + "\\help\\contents.html#SW");
 }

 private void License()
 {
 helpBrowser = createHelpWindow("file:///" + System.getProperty("user.dir") + "\\help\\contents.html#License");
 }

 private void About()
 {
 helpBrowser = createHelpWindow("file:///" + System.getProperty("user.dir") + "\\help\\contents.html#About");
 }

 private void Skeleton()
 {
 String skeleton = "<?xml version=\"1.0\" ?>\n\n";
 skeleton = skeleton + "_<rdf:RDF\n";
 skeleton = skeleton + "_ xmlns:xsd=\"http://www.w3.org/2000/10/XMLSchema#\"\n";
 skeleton = skeleton + "_ xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\"\n";
 skeleton = skeleton + "_ xmlns:rdfs=\"http://www.w3.org/2000/01/rdf-schema#\"\n";
 skeleton = skeleton + "_ xmlns:daml=\"http://www.daml.org/2001/03/daml+oil#\"\n";
 skeleton = skeleton + "_ xmlns:dc=\"http://purl.org/dc/elements/1.1/\"\n";
 skeleton = skeleton + "_ xmlns:oiled=\"http://img.cs.man.ac.uk/oil/oiled#\">\n\n";
 skeleton = skeleton + "__<daml:Ontology rdf:about=\"\">\n";
 skeleton = skeleton + "___<dc:title></dc:title>\n";
 skeleton = skeleton + "___<dc:contributor></dc:contributor>\n";
 skeleton = skeleton + "___<dc:creator></dc:creator>\n";
 skeleton = skeleton + "___<dc:publisher></dc:publisher>\n";
 skeleton = skeleton + "___<dc:subject></dc:subject>\n";
 skeleton = skeleton + "___<dc:description></dc:description>\n";
 skeleton = skeleton + "___<dc:date></dc:date>\n";
 skeleton = skeleton + "___<dc:type></dc:type>\n";
 skeleton = skeleton + "___<dc:format></dc:format>\n";
 skeleton = skeleton + "___<dc:identifier></dc:identifier>\n";
 skeleton = skeleton + "___<dc:language></dc:language>\n";
 skeleton = skeleton + "___<dc:relation></dc:relation>\n";
 skeleton = skeleton + "___<dc:source></dc:source>\n";
 skeleton = skeleton + "___<dc:coverage></dc:coverage>\n";
 skeleton = skeleton + "___<dc:rights></dc:rights>\n";
 skeleton = skeleton + "___<daml:versionInfo></daml:versionInfo>\n";
 skeleton = skeleton + "__</daml:Ontology>\n\n\n";
 skeleton = skeleton + "_</rdf:RDF>";
 codeEditorPane.replaceSelection(skeleton);
 }

 private void Class()
 {
 String skeleton = "__<daml:Class rdf:about=\"\" rdf:ID=\"\">\n";
 skeleton = skeleton + "___<rdfs:label></rdfs:label>\n";
 skeleton = skeleton + "___<rdfs:comment></rdfs:comment>\n";
 skeleton = skeleton + "___<oiled:creator></oiled:creator>\n";
 skeleton = skeleton + "___<oiled:creationDate></oiled:creationDate>\n";
 skeleton = skeleton + "__</daml:Class>\n\n";
 codeEditorPane.replaceSelection(skeleton);
 }

 private void ObjProperty()
 {
 String skeleton = "__<daml:ObjectProperty rdf:about=\"\" rdf:ID=\"\">\n";
 skeleton = skeleton + "___<rdfs:label></rdfs:label>\n";
 skeleton = skeleton + "___<rdfs:comment></rdfs:comment>\n";
 skeleton = skeleton + "___<oiled:creator></oiled:creator>\n";
 skeleton = skeleton + "___<oiled:creationDate></oiled:creationDate>\n";
 skeleton = skeleton + "__</daml:ObjectProperty>\n\n";
 codeEditorPane.replaceSelection(skeleton);
 }

 private void DatProperty()
 {
 String skeleton = "__<daml:DatatypeProperty rdf:about=\"\" rdf:ID=\"\">\n";
 skeleton = skeleton + "___<rdfs:label></rdfs:label>\n";
 skeleton = skeleton + "___<rdfs:comment></rdfs:comment>\n";
 skeleton = skeleton + "___<oiled:creator></oiled:creator>\n";
 skeleton = skeleton + "___<oiled:creationDate></oiled:creationDate>\n";
 skeleton = skeleton + "__</daml:DatatypeProperty>\n\n";
 codeEditorPane.replaceSelection(skeleton);
 }

 private void Individual()
 {
 String skeleton = "__<rdf:Description rdf:about=\"\" rdf:ID=\"\">\n";
 skeleton = skeleton + "___<rdfs:label></rdfs:label>\n";
 skeleton = skeleton + "___<rdfs:comment></rdfs:comment>\n";
 skeleton = skeleton + "___<oiled:creator></oiled:creator>\n";
 skeleton = skeleton + "___<oiled:creationDate></oiled:creationDate>\n";
 skeleton = skeleton + "___<rdf:type>\n";
 skeleton = skeleton + "____<daml:Class rdf:about=\"\"/>\n";
 skeleton = skeleton + "___</rdf:type>\n";
 skeleton = skeleton + "__</rdf:Description>\n";
 codeEditorPane.replaceSelection(skeleton);
 }

 private void setFileName(String fName)
 {
 fileName = fName;
 }

 private void setPathName(String pName)
 {
 filePath = pName;
 }

 public void checkSaveBeforeClose()
 {
 switch(showNotSavedDialog2())
 {
 case JOptionPane.YES_OPTION:
 {
 Save();
 Close();
 break;
 }
 case JOptionPane.NO_OPTION:
 {
 Close();
 break;
 }
 }
 }

 private int showNotSavedDialog()
 {
 int returnVal = JOptionPane.showConfirmDialog(SWOGDesktop.this,"The last document has not been saved. \nDo you want to save it first?", "Save Changes?", JOptionPane.YES_NO_CANCEL_OPTION, JOptionPane.QUESTION_MESSAGE);
 return returnVal;
 }

 private int showNotSavedDialog2()
 {
 int returnVal = JOptionPane.showConfirmDialog(SWOGDesktop.this,"The last document has not been saved. \nDo you want to save it first?", "Save Changes?", JOptionPane.YES_NO_OPTION, JOptionPane.QUESTION_MESSAGE);
 return returnVal;
 }

 private void updateUndo()
 {
 if(undo.canUndo())
 {
 edUndo.setEnabled(true);
 edUndo.putValue(Action.NAME, undo.getUndoPresentationName());
 }
 else
 {
 edUndo.setEnabled(false);
 edUndo.putValue(Action.NAME, "Undo");
 }
 if(undo.canRedo())
 {
 edRedo.setEnabled(true);
 edRedo.putValue(Action.NAME, undo.getRedoPresentationName());
 }
 else
 {
 edRedo.setEnabled(false);
 edRedo.putValue(Action.NAME, "Redo");
 }
 }

 private class PopupListener extends MouseAdapter
 {
 public void mousePressed(MouseEvent e)
 {
 maybeShowPopup(e);
 }

 public void mouseReleased(MouseEvent e)
 {
 maybeShowPopup(e);
 }

 private void maybeShowPopup(MouseEvent e)
 {
 if (e.isPopupTrigger())
 {
 popup.show(e.getComponent(), e.getX(), e.getY());
 }
 }
 }

 private class SWOGUndoableEditListener implements UndoableEditListener
 {
 public void undoableEditHappened(UndoableEditEvent e)
 {
 undo.addEdit(e.getEdit());
 edUndo.updateUndoState();
 edRedo.updateRedoState();
 }
 }

 private class UndoAction extends AbstractAction
 {
 public UndoAction()
 {
 super("Undo");
 setEnabled(false);
 }

 public void actionPerformed(ActionEvent e)
 {
 try
 {
 undo.undo();
 }
 catch (CannotUndoException ex)
 {
 JOptionPane.showMessageDialog(SWOGDesktop.this, "Unable to Undo Previous Action.\n" + ex, "Undo Error", JOptionPane.ERROR_MESSAGE);
 ex.printStackTrace();
 }

 updateUndoState();
 edRedo.updateRedoState();
 }

 private void updateUndoState()
 {
 if (undo.canUndo())
 {
 setEnabled(true);
 putValue(Action.NAME, undo.getUndoPresentationName());
 }
 else
 {
 setEnabled(false);
 putValue(Action.NAME, "Undo");
 }
 }
 }

 private class RedoAction extends AbstractAction
 {
 public RedoAction()
 {
 super("Redo");
 setEnabled(false);
 }

 public void actionPerformed(ActionEvent e)
 {
 try
 {
 undo.redo();
 }
 catch (CannotRedoException ex)
 {
 JOptionPane.showMessageDialog(SWOGDesktop.this, "Unable to Redo Previous Action.\n" + ex, "Redo Error", JOptionPane.ERROR_MESSAGE);
 ex.printStackTrace();
 }

 updateRedoState();
 edUndo.updateUndoState();
 }

 private void updateRedoState()
 {
 if (undo.canRedo())
 {
 setEnabled(true);
 putValue(Action.NAME, undo.getRedoPresentationName());
 }
 else
 {
 setEnabled(false);
 putValue(Action.NAME, "Redo");
 }
 }
 }
 }

SWOGHelp.java

 import java.io.*;
 import java.net.*;
 import java.lang.*;
 import java.awt.*;
 import java.awt.event.*;
 import javax.swing.*;
 import javax.swing.text.*;
 import javax.swing.event.*;
 import java.util.ArrayList;

 public class SWOGHelp extends JFrame implements HyperlinkListener
 {
 private JEditorPane HTMLJEdPane;
 private URL url;
 private String currentURLStr;

 private JTextField newAddressTextFld;

 private ArrayList backArrLst;
 private ArrayList forwardArrLst;

 public SWOGHelp(String u)
 {
 super("SWOG - Semantic Web Ontology Generator [Help]");
 ImageIcon logoIcon = new ImageIcon("images/swogHelpIcon.gif");
 setIconImage(logoIcon.getImage());

 Rectangle screenSize = new Rectangle(500, 500);
 setBounds(screenSize);

 backArrLst = new ArrayList(10);
 forwardArrLst = new ArrayList(10);

 addWindowListener(
 new WindowAdapter()
 {
 public void windowActivated(WindowEvent e)
 {
 }

 public void windowClosed(WindowEvent e)
 {
 }

 public void windowClosing(WindowEvent e)
 {
 SWOGHelp.this.setVisible(false);
 }

 public void windowIconified(WindowEvent e)
 {
 }

 public void windowDeiconified(WindowEvent e)
 {
 }

 public void windowDeactivated(WindowEvent e)
 {
 }

 public void windowOpened(WindowEvent e)
 {
 }
 });
 JDesktopPane desktop = new JDesktopPane();
 setContentPane(desktop);
 JToolBar toolBar = ConstructToolBar();
 JMenuBar menuBar = ConstructMenuBar();
 JPanel mainPanel = new JPanel();
 mainPanel.setLayout(new BorderLayout());
 setJMenuBar(menuBar);
 getContentPane().setLayout(new BorderLayout());
 getContentPane().add(toolBar, BorderLayout.NORTH);
 getContentPane().add(mainPanel, BorderLayout.CENTER);
 desktop.putClientProperty("JDesktopPane.dragMode", "outline");

 try
 {
 url = new URL(u);
 HTMLJEdPane = new JEditorPane(url);
 HTMLJEdPane.setEditable(false);

 JScrollPane scrollPane = new JScrollPane();
 scrollPane.getViewport().add(HTMLJEdPane, BorderLayout.CENTER);

 mainPanel.add(scrollPane, BorderLayout.CENTER);

 HTMLJEdPane.addHyperlinkListener(this);
 }
 catch(MalformedURLException mue)
 {
 JOptionPane.showMessageDialog(SWOGHelp.this, "Your URL was not in the proper format.\n" + mue, "Malformed URL Error", JOptionPane.ERROR_MESSAGE);
 }
 catch(IOException ioe)
 {
 JOptionPane.showMessageDialog(SWOGHelp.this, "There was an error in your input.\n" + ioe, "IO Error", JOptionPane.ERROR_MESSAGE);
 }
 newAddressTextFld.setText(u);
 currentURLStr = newAddressTextFld.getText();
 }

 private JMenuBar ConstructMenuBar()
 {
 JMenuBar menubar = new JMenuBar();

 JMenu topicsMenu = ConstructTopicsMenu();
 JMenu helpTypeMenu = ConstructHelpTypeMenu();

 menubar.add(topicsMenu);
 menubar.add(helpTypeMenu);
 return menubar;
 }

 private JMenu ConstructTopicsMenu()
 {
 JMenu topicsMenu = new JMenu("Topics");
 topicsMenu.setMnemonic(KeyEvent.VK_T);

 JMenuItem tpContents = new JMenuItem("Contents");
 tpContents.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Contents();
 }
 });
 JMenuItem tpSWOG = new JMenuItem("SWOG");
 tpSWOG.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 SWOG();
 }
 });
 JMenuItem tpSW = new JMenuItem("Semantic Web");
 tpSW.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 SW();
 }
 });
 JMenuItem tpLicense = new JMenuItem("License");
 tpLicense.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 License();
 }
 });
 JMenuItem tpAbout = new JMenuItem("About");
 tpAbout.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 About();
 }
 });
 tpContents.setMnemonic(KeyEvent.VK_C);
 tpSWOG.setMnemonic(KeyEvent.VK_S);
 tpSW.setMnemonic(KeyEvent.VK_W);
 tpLicense.setMnemonic(KeyEvent.VK_L);
 tpAbout.setMnemonic(KeyEvent.VK_A);

 topicsMenu.add(tpContents);
 topicsMenu.add(tpSWOG);
 topicsMenu.add(tpSW);
 topicsMenu.addSeparator();
 topicsMenu.add(tpLicense);
 topicsMenu.add(tpAbout);

 return topicsMenu;
 }

 private JMenu ConstructHelpTypeMenu()
 {
 JMenu helpTypeMenu = new JMenu("Help Type");
 helpTypeMenu.setMnemonic(KeyEvent.VK_H);

 JMenuItem htContents = new JMenuItem("Contents");
 htContents.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Contents();
 }
 });
 JMenuItem htIndex = new JMenuItem("Index");
 htIndex.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Index();
 }
 });
 htContents.setMnemonic(KeyEvent.VK_C);
 htIndex.setMnemonic(KeyEvent.VK_I);

 helpTypeMenu.add(htContents);
 helpTypeMenu.add(htIndex);

 return helpTypeMenu;
 }

 private JToolBar ConstructToolBar()
 {
 JToolBar toolbar = new JToolBar();
 JButton button = null;

 button = new JButton(new ImageIcon("images/Back24.gif"));
 button.setToolTipText("Back");
 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Back();
 }
 });
 toolbar.add(button);

 button = new JButton(new ImageIcon("images/Forward24.gif"));
 button.setToolTipText("Forward");
 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Forward();
 }
 });
 toolbar.add(button);
 toolbar.addSeparator();

 button = new JButton(new ImageIcon("images/Home24.gif"));
 button.setToolTipText("Home");
 button.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Home();
 }
 });
 toolbar.add(button);
 toolbar.addSeparator();

 newAddressTextFld = new JTextField("file:///");
 newAddressTextFld.addActionListener(
 new ActionListener()
 {
 public void actionPerformed(ActionEvent e)
 {
 Location();
 }
 });
 toolbar.add(newAddressTextFld);

 return toolbar;
 }

 public void hyperlinkUpdate(HyperlinkEvent hle)
 {
 if(hle.getEventType() == HyperlinkEvent.EventType.ACTIVATED)
 {
 Cursor cursor = HTMLJEdPane.getCursor();
 Cursor waitCursor = Cursor.getPredefinedCursor(Cursor.WAIT_CURSOR);
 HTMLJEdPane.setCursor(waitCursor);

 SwingUtilities.invokeLater(new HelpLoader(HTMLJEdPane, hle.getURL(), cursor));

 if (hle.getEventType() == HyperlinkEvent.EventType.ACTIVATED)
 {
 try
 {
 checkBackSize();
 backArrLst.add(currentURLStr);
 HTMLJEdPane.setPage(hle.getURL());
 newAddressTextFld.setText(hle.getURL().toExternalForm());
 currentURLStr = newAddressTextFld.getText();
 }
 catch(IOException ioe)
 {
 JOptionPane.showMessageDialog(SWOGHelp.this, "Can't follow link to " + hle.getURL().toExternalForm() + "\n" + ioe, "I/O Error", JOptionPane.ERROR_MESSAGE);
 }
 }
 }
 }

 public void Contents()
 {
 checkBackSize();
 backArrLst.add(currentURLStr);
 try
 {
 newAddressTextFld.setText("file:///" + System.getProperty("user.dir") + "\\help\\contents.html");
 HTMLJEdPane.setPage("file:///" + System.getProperty("user.dir") + "\\help\\contents.html");
 currentURLStr = newAddressTextFld.getText();
 }
 catch (IOException ioe)
 {
 }
 }

 public void SWOG()
 {
 checkBackSize();
 backArrLst.add(currentURLStr);
 try
 {
 newAddressTextFld.setText("file:///" + System.getProperty("user.dir") + "\\help\\contents.html#SWOG");
 HTMLJEdPane.setPage("file:///" + System.getProperty("user.dir") + "\\help\\contents.html#SWOG");
 currentURLStr = newAddressTextFld.getText();
 }
 catch (IOException ioe)
 {
 }
 }

 public void SW()
 {
 checkBackSize();
 backArrLst.add(currentURLStr);
 try
 {
 newAddressTextFld.setText("file:///" + System.getProperty("user.dir") + "\\help\\contents.html#SW");
 HTMLJEdPane.setPage("file:///" + System.getProperty("user.dir") + "\\help\\contents.html#SW");
 currentURLStr = newAddressTextFld.getText();
 }
 catch (IOException ioe)
 {
 }
 }

 public void License()
 {
 checkBackSize();
 backArrLst.add(currentURLStr);
 try
 {
 newAddressTextFld.setText("file:///" + System.getProperty("user.dir") + "\\help\\contents.html#License");
 HTMLJEdPane.setPage("file:///" + System.getProperty("user.dir") + "\\help\\contents.html#License");
 currentURLStr = newAddressTextFld.getText();
 }
 catch (IOException ioe)
 {
 }
 }

 public void About()
 {
 checkBackSize();
 backArrLst.add(currentURLStr);
 try
 {
 newAddressTextFld.setText("file:///" + System.getProperty("user.dir") + "\\help\\contents.html#About");
 HTMLJEdPane.setPage("file:///" + System.getProperty("user.dir") + "\\help\\contents.html#About");
 currentURLStr = newAddressTextFld.getText();
 }
 catch (IOException ioe)
 {
 }
 }

 public void Content()
 {
 checkBackSize();
 backArrLst.add(currentURLStr);
 try
 {
 newAddressTextFld.setText("file:///" + System.getProperty("user.dir") + "\\help\\contents.html");
 HTMLJEdPane.setPage("file:///" + System.getProperty("user.dir") + "\\help\\contents.html");
 currentURLStr = newAddressTextFld.getText();
 clearForwardCache();
 }
 catch (IOException ioe)
 {
 }
 }

 public void Index()
 {
 checkBackSize();
 backArrLst.add(currentURLStr);

 try
 {
 newAddressTextFld.setText("file:///" + System.getProperty("user.dir") + "\\help\\index.html");
 HTMLJEdPane.setPage("file:///" + System.getProperty("user.dir") + "\\help\\index.html");
 currentURLStr = newAddressTextFld.getText();
 clearForwardCache();
 }
 catch (IOException ioe)
 {
 }
 }

 public void Back()
 {
 if (backArrLst.size() > 0)
 {
 forwardArrLst.add(currentURLStr);
 newAddressTextFld.setText((String)backArrLst.get((backArrLst.size() - 1)));
 backArrLst.remove((backArrLst.size() - 1));
 try
 {
 HTMLJEdPane.setPage(newAddressTextFld.getText());
 currentURLStr = newAddressTextFld.getText();
 }
 catch (IOException ioe)
 {
 }
 }
 }

 public void Forward()
 {
 checkForwardSize();
 if (forwardArrLst.size() > 0)
 {
 backArrLst.add(currentURLStr);
 newAddressTextFld.setText((String)forwardArrLst.get((forwardArrLst.size() - 1)));
 forwardArrLst.remove((forwardArrLst.size() - 1));
 try
 {
 HTMLJEdPane.setPage(newAddressTextFld.getText());
 currentURLStr = newAddressTextFld.getText();
 }
 catch (IOException ioe)
 {
 }
 }
 }

 public void Home()
 {
 checkBackSize();
 backArrLst.add(currentURLStr);
 clearForwardCache();
 try
 {
 newAddressTextFld.setText("file:///" + System.getProperty("user.dir") + "\\help\\contents.html");
 HTMLJEdPane.setPage("file:///" + System.getProperty("user.dir") + "\\help\\contents.html");
 currentURLStr = newAddressTextFld.getText();
 }
 catch (IOException ioe)
 {
 }
 }

 public void checkBackSize()
 {
 if (backArrLst.size() == 10)
 {
 backArrLst.remove(0);
 }
 }

 public void checkForwardSize()
 {
 if (backArrLst.size() == 10)
 {
 backArrLst.remove(0);
 }
 }

 public void clearForwardCache()
 {
 forwardArrLst.clear();
 }

 public void Location()
 {
 try
 {
 checkBackSize();
 backArrLst.add(currentURLStr);
 HTMLJEdPane.setPage(new URL(newAddressTextFld.getText()));
 currentURLStr = newAddressTextFld.getText();
 }
 catch(MalformedURLException mue)
 {
 JOptionPane.showMessageDialog(SWOGHelp.this, "Your URL was not in the proper format.\n" + mue, "Malformed URL Error", JOptionPane.ERROR_MESSAGE);
 }
 catch(IOException ioe)
 {
 JOptionPane.showMessageDialog(SWOGHelp.this, "There was an error in your input.\n" + ioe, "IO Error", JOptionPane.ERROR_MESSAGE);
 }
 }

 private class HelpLoader implements Runnable
 {
 private JEditorPane HTMLJEdPane;
 private URL url;
 private Cursor cursor;

 HelpLoader(JEditorPane html, URL u, Cursor c)
 {
 HTMLJEdPane = html;
 url = u;
 cursor = c;
 }

 public void run()
 {
 if(url == null)
 {
 HTMLJEdPane.setCursor(cursor);
 Container parent = HTMLJEdPane.getParent();
 parent.repaint();
 }
 else
 {
 Document document = HTMLJEdPane.getDocument();
 try
 {
 newAddressTextFld.setText(url.toExternalForm());
 HTMLJEdPane.setPage(url);
 currentURLStr = newAddressTextFld.getText();
 }
 catch(IOException ioe)
 {
 HTMLJEdPane.setDocument(document);
 }
 finally
 {
 url = null;
 SwingUtilities.invokeLater(this);
 }
 }
 }
 }
 }

SWOGXMLDocument.java

// Syntax highlighting class source code modified from
// Java Developers Journal.com "Syntax Highlighting," Volume: 4 Issue: 7, p. 62
// URL: http://www.sys-con.com/java/source/4-7/code.cfm?Page=62
// to process XML.

 import java.util.*;
 import java.awt.*;
 import javax.swing.text.*;

 class SWOGXMLDocument extends DefaultStyledDocument
 {
 private String word = "";
 private int currentPos = 0;
 private int insideTag = 0;

 private SimpleAttributeSet kw = new SimpleAttributeSet();
 private SimpleAttributeSet attr = new SimpleAttributeSet();
 private SimpleAttributeSet nspc = new SimpleAttributeSet();
 private SimpleAttributeSet string = new SimpleAttributeSet();
 private SimpleAttributeSet normal = new SimpleAttributeSet();
 private SimpleAttributeSet comments = new SimpleAttributeSet();

 private Vector classes = new Vector();
 private Vector namespaces = new Vector();
 private Vector attributes = new Vector();

 private int mode;
 public static final int STRING_MODE = 10;
 public static final int COMMENT_MODE = 11;
 public static final int TEXT_MODE = 12;

 public SWOGXMLDocument()
 {
 classes.addElement("xml");
 classes.addElement("xmlns");

 attributes.addElement("version");
 attributes.addElement("lang");

 classes.addElement("RDF");
 classes.addElement("Statment");
 classes.addElement("Property");
 classes.addElement("Description");
 classes.addElement("Bag");
 classes.addElement("Seq");
 classes.addElement("Alt");

 attributes.addElement("subject");
 attributes.addElement("predicate");
 attributes.addElement("object");
 attributes.addElement("type");
 attributes.addElement("value");
 attributes.addElement("li");
 attributes.addElement("about");
 attributes.addElement("aboutEach");
 attributes.addElement("aboutEachPrefix");
 attributes.addElement("ID");
 attributes.addElement("bagID");
 attributes.addElement("resource");
 attributes.addElement("parseType");

 classes.addElement("Resource");
 classes.addElement("Class");
 classes.addElement("ConstraintResource");
 classes.addElement("ConstraintProperty");
 classes.addElement("Literal");
 classes.addElement("Container");
 classes.addElement("ContainerMembershipProperty");

 attributes.addElement("comment");
 attributes.addElement("label");
 attributes.addElement("subClassOf");
 attributes.addElement("subPropertyOf");
 attributes.addElement("seeAlso");
 attributes.addElement("isDefinedBy");
 attributes.addElement("domain");
 attributes.addElement("range");

 classes.addElement("Datatype");
 classes.addElement("Thing");
 classes.addElement("Nothing");
 classes.addElement("Restriction");
 classes.addElement("ObjectProperty");
 classes.addElement("DatatypeProperty");
 classes.addElement("TransitiveProperty");
 classes.addElement("UniqueProperty");
 classes.addElement("UnambiguousProperty");
 classes.addElement("List");
 classes.addElement("Ontology");

 attributes.addElement("equivalentTo");
 attributes.addElement("sameClassAs");
 attributes.addElement("samePropertyAs");
 attributes.addElement("sameIndividualAs");
 attributes.addElement("disjointWith");
 attributes.addElement("differentIndividualFrom");
 attributes.addElement("disjointUnionOf");
 attributes.addElement("unionOf");
 attributes.addElement("intersectionOf");
 attributes.addElement("complementOf");
 attributes.addElement("oneOf");
 attributes.addElement("onProperty");
 attributes.addElement("toClass");
 attributes.addElement("hasValue");
 attributes.addElement("hasClass");
 attributes.addElement("minCardinality");
 attributes.addElement("maxCardinality");
 attributes.addElement("cardinality");
 attributes.addElement("hasClassQ");
 attributes.addElement("minCardinalityQ");
 attributes.addElement("maxCardinalityQ");
 attributes.addElement("cardinalityQ");
 attributes.addElement("inverseOf");
 attributes.addElement("nil");
 attributes.addElement("first");
 attributes.addElement("rest");
 attributes.addElement("item");
 attributes.addElement("versionInfo");
 attributes.addElement("imports");

 attributes.addElement("title");
 attributes.addElement("contributor");
 attributes.addElement("creator");
 attributes.addElement("publisher");
 attributes.addElement("subject");
 attributes.addElement("description");
 attributes.addElement("date");
 attributes.addElement("format");
 attributes.addElement("identifier");
 attributes.addElement("language");
 attributes.addElement("relation");
 attributes.addElement("source");
 attributes.addElement("coverage");
 attributes.addElement("rights");

 attributes.addElement("creationDate");

 namespaces.addElement("xsd");
 namespaces.addElement("rdf");
 namespaces.addElement("rdfs");
 namespaces.addElement("daml");
 namespaces.addElement("dc");
 namespaces.addElement("oiled");

 StyleConstants.setBold(kw, true);
 StyleConstants.setBold(attr, true);
 StyleConstants.setBold(nspc, true);
 StyleConstants.setForeground(kw, new Color(0x800080));
 StyleConstants.setForeground(attr, Color.blue);
 StyleConstants.setForeground(nspc, Color.red);
 StyleConstants.setForeground(string, Color.green);
 StyleConstants.setForeground(normal, Color.black);
 StyleConstants.setForeground(comments, Color.orange);
 mode = TEXT_MODE;
 }

 public void processChar(String str)
 {
 char strChar = str.charAt(0);
 if ((mode != this.COMMENT_MODE) && (mode != this.STRING_MODE))
 {
 mode = TEXT_MODE;
 }
 switch (strChar)
 {
 case('<'):
 {
 insideTag = 1;
 checkForKeyword();
 break;
 }
 case('>'):
 {
 checkForKeyword();
 insideTag = 0;
 break;
 }
 case (' '):
 case ('='):
 case(':'):
 case('/'):
 case('?'):
 case('\n'):
 {
 checkForKeyword();

 if (mode == STRING_MODE && strChar == '\n')
 {
 mode = TEXT_MODE;
 }
 }
 break;
 case ('"'):
 {
 insertTextString(str, currentPos);
 this.checkForString();
 }
 break;
 case ('!'):
 case ('-'):
 {
 checkForComment();
 }
 break;
 }

 if (mode == this.TEXT_MODE)
 {
 this.checkForString();
 this.checkForComment();
 }

 if (mode == this.STRING_MODE)
 {
 insertTextString(str, this.currentPos);
 }

 if (mode == this.COMMENT_MODE)
 {
 insertCommentString(str, this.currentPos);
 }
 }

 private void processChar(char strChar)
 {
 char[] chrstr = new char[1];
 chrstr[0] = strChar;
 String str = new String(chrstr);
 processChar(str);
 }

 public void insertString(int offs, String str, AttributeSet a) throws BadLocationException
 {
 super.insertString(offs, str, normal);
 int strLen = str.length();
 int endpos = offs + strLen;
 int strpos;
 for (int i = offs; i < endpos; i++)
 {
 currentPos = i;
 strpos = i - offs;
 processChar(str.charAt(strpos));
 }
 currentPos = offs;
 }

 private void insertKeyword(String str, int pos, int type)
 {
 if ((mode != STRING_MODE) && (mode != COMMENT_MODE))
 {
 try
 {
 this.remove(pos - str.length(), str.length());

 switch(type)
 {
 case 1:
 {
 super.insertString(pos - str.length(), str, kw);
 break;
 }
 case 2:
 {
 super.insertString(pos - str.length(), str, attr);
 break;
 }
 case 3:
 {
 super.insertString(pos - str.length(), str, nspc);
 break;
 }
 }
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }
 }

 private void insertTextString(String str, int pos)
 {
 if (mode != COMMENT_MODE)
 {
 try
 {
 this.remove(pos,str.length());
 super.insertString(pos, str, string);
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }
 }

 private void insertCommentString(String str, int pos)
 {
 if (mode != STRING_MODE)
 {
 try
 {
 this.remove(pos,str.length());
 super.insertString(pos, str, comments);
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }
 }

 private void checkForKeyword()
 {
 if ((mode != STRING_MODE) && (mode != COMMENT_MODE))
 {

 int offs = this.currentPos;

 Element element = this.getParagraphElement(offs);
 String elementText = "";
 try
 {
 elementText = this.getText(element.getStartOffset(), element.getEndOffset() - element.getStartOffset());
 }
 catch(Exception ex)
 {
 System.out.println("no text");
 }

 int strLen = elementText.length();

 if (strLen == 0)
 {
 return;
 }
 int i = 0;

 if (element.getStartOffset() > 0)
 {
 offs = offs - element.getStartOffset();
 }
 if ((offs >= 0) && (offs <= strLen-1))
 {
 i = offs;
 while (i > 0)
 {
 i--;
 char charAt = elementText.charAt(i);

 if ((i == 0) | (charAt == ' ') | (charAt == ':') | (charAt == '<') | (charAt == '>') | (charAt == '=') | (charAt == '/') | (charAt == '?'))
 {
 if(i != 0)
 {
 i++;
 }

 word = elementText.substring(i, offs);
 String s = word.trim();

 if ((classes.contains(s)) && (insideTag == 1))
 {
 insertKeyword(word, currentPos, 1);
 }
 else if ((attributes.contains(s)) && (insideTag == 1))
 {
 insertKeyword(word, currentPos, 2);
 }
 else if ((namespaces.contains(s)) && (insideTag == 1))
 {
 insertKeyword(word, currentPos, 3);
 }
 break;
 }
 }
 }
 }
 }

 private void checkForComment()
 {
 int offs = this.currentPos;
 Element element = this.getParagraphElement(offs);
 String elementText = "";
 try
 {
 elementText = this.getText(element.getStartOffset(), element.getEndOffset() - element.getStartOffset());
 }
 catch(Exception ex)
 {
 System.out.println("no text");
 }

 int strLen = elementText.length();

 if (strLen == 0)
 {
 return;
 }

 int i = 0;

 if (element.getStartOffset() > 0)
 {
 offs = offs - element.getStartOffset();
 }
 if ((offs >= 1) && (offs <= strLen-1))
 {
 i = offs;

 if ((mode == COMMENT_MODE) && (elementText.charAt(i) == '-') && (elementText.charAt(i - 1) == '-'))
 {
 mode = TEXT_MODE;
 this.insertCommentString("--", currentPos - 1);
 }

 if ((mode == TEXT_MODE) && (elementText.charAt(i) == '-') && (elementText.charAt(i - 1) == '-') && (elementText.charAt(i - 2) == '!'))
 {
 mode = COMMENT_MODE;
 this.insertCommentString("!--", currentPos - 2);
 }
 }
 }

 private void checkForString()
 {
 int offs = this.currentPos;
 Element element = this.getParagraphElement(offs);
 String elementText = "";
 try
 {
 elementText = this.getText(element.getStartOffset(), element.getEndOffset() - element.getStartOffset());
 }
 catch(Exception ex)
 {
 System.out.println("no text");
 }

 int strLen = elementText.length();
 if (strLen == 0)
 {
 return;
 }
 int i = 0;

 if (element.getStartOffset() > 0)
 {
 offs = offs - element.getStartOffset();
 }

 int quotes = 0;

 if ((offs >= 0) && (offs <= strLen-1))
 {
 i = offs;

 while (i > 0)
 {
 char charAt = elementText.charAt(i);
 if ((charAt == '"'))
 {
 quotes++;
 }
 i--;
 }

 if ((quotes % 2) != 0)
 {
 mode = STRING_MODE;
 }
 else
 {
 mode = TEXT_MODE;
 }
 }
 }
 }

SWOGFileFilter.java

 // Source code modified from
 // Safari Tech Books Online : Java > Java Swing > 12. Chooser Dialogs > 12.2 The File Chooser Package
 // URL: http://safari.oreilly.com/main.asp?bookname=jswing&snode=69

 import java.io.File;
 import javax.swing.filechooser.FileFilter;

 public class SWOGFileFilter extends FileFilter
 {
 String[] extensions;
 String description;

 public SWOGFileFilter(String ext)
 {
 this (new String[] {ext}, null);
 }

 public SWOGFileFilter(String[] exts, String descr)
 {
 extensions = new String[exts.length];
 for (int i = exts.length - 1; i >= 0; i--)
 {
 extensions[i] = exts[i].toLowerCase();
 }
 description = (descr == null ? exts[0] + " files" : descr);
 }

 public boolean accept(File f)
 {
 if (f.isDirectory())
 {
 return true;
 }
 String name = f.getName().toLowerCase();
 for (int i = extensions.length - 1; i >= 0; i--)
 {
 if (name.endsWith(extensions[i]))
 {
 return true;
 }
 }
 return false;
 }

 public String getDescription()
 {
 return description;
 }
 }

